1
|
Zambuto SG, Kolluru SS, Ferchichi E, Rudewick HF, Fodera DM, Myers KM, Zustiak SP, Oyen ML. Evaluation of gelatin bloom strength on gelatin methacryloyl hydrogel properties. J Mech Behav Biomed Mater 2024; 154:106509. [PMID: 38518513 DOI: 10.1016/j.jmbbm.2024.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Samyuktha S Kolluru
- Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; The Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Eya Ferchichi
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, 63103, USA
| | - Hannah F Rudewick
- Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Daniella M Fodera
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, 63103, USA
| | - Michelle L Oyen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
2
|
Zambuto SG, Kolluru SS, Ferchichi E, Rudewick HF, Fodera DM, Myers KM, Zustiak SP, Oyen ML. Evaluation of gelatin bloom strength on gelatin methacryloyl hydrogel properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566924. [PMID: 38014304 PMCID: PMC10680736 DOI: 10.1101/2023.11.13.566924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.
Collapse
|
3
|
3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction. Pharmaceutics 2021; 13:pharmaceutics13122143. [PMID: 34959423 PMCID: PMC8708498 DOI: 10.3390/pharmaceutics13122143] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Gelatin-polyvinylpyrrolidone (PVP) and gelatin-poly(vinyl alcohol) (PVA) mucoadhesive buccal films loaded with propranolol hydrochloride (PRH) were prepared by semi-solid extrusion 3D printing. The aim of this study was to evaluate the effects of the synthetic polymers PVP and PVA on thermal and mechanical properties and drug release profiles of gelatin-based films. The Fourier-transform infrared spectroscopy showed that hydrogen bonding between gelatin and PVP formed during printing. In the other blend, neither the esterification of PVA nor gelatin occurred. Differential scanning calorimetry revealed the presence of partial helical structures. In line with these results, the mechanical properties and drug release profiles were different for each blend. Formulation with gelatin-PVP and PRH showed higher tensile strength, hardness, and adhesive strength but slower drug release than formulation with gelatin-PVA and PRH. The in silico population simulations indicated increased drug bioavailability and decreased inter-individual variations in the resulting pharmacokinetic profiles compared to immediate-release tablets. Moreover, the simulation results suggested that reduced PRH daily dosing can be achieved with prolonged-release buccal films, which improves patient compliance.
Collapse
|
4
|
Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues. PLoS One 2018; 13:e0191919. [PMID: 29373598 PMCID: PMC5786325 DOI: 10.1371/journal.pone.0191919] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/12/2018] [Indexed: 12/31/2022] Open
Abstract
Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.
Collapse
|
5
|
Systematic mechanical evaluation of electrospun gelatin meshes. J Mech Behav Biomed Mater 2017; 69:412-419. [PMID: 28208112 DOI: 10.1016/j.jmbbm.2017.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/17/2016] [Accepted: 02/06/2017] [Indexed: 01/18/2023]
Abstract
Electrospinning is a simple and efficient process for producing sub-micron fibres. However, the process has many variables, and their effects on the non-woven mesh of fibres is complex. In particular, the effects on the mechanical properties of the fibre meshes are poorly understood. This paper conducts a parametric study, where the concentration and bloom strength of the gelatin solutions are varied, while all electrospinning process parameters are held constant. The effects on the fibrous meshes are monitored using scanning electron microscopy and mechanical testing under uniaxial tension. Mesh mechanical properties are relatively consistent, despite changes to the solutions, demonstrating the robustness of electrospinning. The gel strength of the solution is shown to have a statistically significant effect on the morphology, stiffness and strength of the meshes, while the fibre diameter has surprisingly little influence on the stiffness of the meshes. This experimental finding is supported by finite element analysis, demonstrating that the stiffness of the meshes is controlled by the volume fraction, rather than fibre diameter. Our results demonstrate the importance of understanding how electrospinning parameters influence the pore size of the meshes, as controlling fibre diameter alone is insufficient for consistent mechanical properties.
Collapse
|
7
|
Membrane-plate transition in leaves as an influence on dietary selectivity and tooth form. J Hum Evol 2016; 98:18-26. [PMID: 27265521 DOI: 10.1016/j.jhevol.2016.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 01/29/2016] [Accepted: 04/26/2016] [Indexed: 11/22/2022]
Abstract
Primates need accurate sensory signals about food quality to forage efficiently. Current evidence suggests that they target leaf foods based on color at long-range, reinforcing this with post-ingestive sensations relating to leaf toughness evoked during chewing. Selection against tough leaves effectively selects against high fiber content, which in turn gives a greater opportunity of acquiring protein. Here we consider a novel intermediate mechanical factor that could aid a folivore: leaves may transform mechanically from membranes (sheets that cannot maintain their shape under gravitational loads and thus 'flop') early on in development into plates (that can maintain their shape) as they mature. This transformation can be detected visually. Mechanical tests on two species of leaf eaten by southern muriqui monkeys (Brachyteles arachnoides) in Southern Atlantic Forest, Brazil, support a membrane-to-plate shift in turgid leaves during their development. A measure of this mechanical transition, termed lambda (λ), was found to correlate with both leaf color and toughness, thus supporting a potential role in leaf selection. Muriquis appear to select membranous leaves, but they also eat leaves that are plate-like. We attribute this to the degree of cresting of their molar teeth. A dietary choice restricted to membranous leaves might typify the type of 'fallback' leaf that even frugivorous primates will target because membranes of low toughness are relatively easily chewed. This may be relevant to the diets of hominins because these lack the bladed postcanine teeth seen in mammals with a specialized folivorous diet. We suggest that mammals with such dental adaptations can consume tougher leaf 'plates' than others.
Collapse
|
9
|
Lucas PW, Philip SM, Al-Qeoud D, Al-Draihim N, Saji S, van Casteren A. Structure and scale of the mechanics of mammalian dental enamel viewed from an evolutionary perspective. Evol Dev 2015; 18:54-61. [DOI: 10.1111/ede.12169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Peter W. Lucas
- Department of Bioclinical Sciences; Faculty of Dentistry; Kuwait University; Jabriya, Kuwait, P.O. Box 24923 Safat 13110 Kuwait
| | - Swapna M. Philip
- Department of Bioclinical Sciences; Faculty of Dentistry; Kuwait University; Jabriya, Kuwait, P.O. Box 24923 Safat 13110 Kuwait
| | - Dareen Al-Qeoud
- Department of Bioclinical Sciences; Faculty of Dentistry; Kuwait University; Jabriya, Kuwait, P.O. Box 24923 Safat 13110 Kuwait
| | - Nuha Al-Draihim
- Department of Bioclinical Sciences; Faculty of Dentistry; Kuwait University; Jabriya, Kuwait, P.O. Box 24923 Safat 13110 Kuwait
| | - Sreeja Saji
- Department of Bioclinical Sciences; Faculty of Dentistry; Kuwait University; Jabriya, Kuwait, P.O. Box 24923 Safat 13110 Kuwait
| | - Adam van Casteren
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology; Max Planck Institute for Evolutionary Anthropology; Deutscher Platz 6 D-04103 Leipzig Germany
| |
Collapse
|
10
|
Berteau JP, Oyen M, Shefelbine S. In vitrocharacterisation of the elasticity and the permeability of the mouse cartilage during growth using microindentation. Comput Methods Biomech Biomed Engin 2014; 17 Suppl 1:68-9. [DOI: 10.1080/10255842.2014.931129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|