1
|
Thonglam J, Nuntanaranont T, Kong X, Meesane J. Tissue scaffolds mimicking hierarchical bone morphology as biomaterials for oral maxillofacial surgery with augmentation: structure, properties, and performance evaluation for in vitrotesting. Biomed Mater 2024; 19:055035. [PMID: 39094618 DOI: 10.1088/1748-605x/ad6ac4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
In this study, tissue scaffolds mimicking hierarchical morphology are constructed and proposed for bone augmentation. The scaffolds are fabricated using lyophilization, before coating them with collagen (Col). Subsequently, the Col-coated scaffolds undergo a second lyophilization, followed by silk fibroin (SF) coating, and a third lyophilization. Thereafter, the scaffolds are divided into six groups with varying ratios of Col to SF: Col/SF = 7:3, 5:5, 3:7, 10:0, and 0:10, with an SF scaffold serving as the control group. The scaffold morphology is examined using a scanning electron microscope, while molecular and structural formations are characterized by Fourier transform infrared spectrometer and differential scanning calorimeter, respectively. Physical and mechanical properties including swelling and compression are tested. Biological functions are assessed throughin vitroosteoblast cell culturing. Biomarkers indicative of bone formation-cell viability and proliferation, alkaline phosphatase activity, and calcium content-are analyzed. Results demonstrate that scaffolds coated with Col and SF exhibit sub-porous formations within the main pore. The molecular formation reveals interactions between the hydrophilic groups of Col and SF. The scaffold structure contains bound water and SF formation gets disrupted by Col. Physical and mechanical properties are influenced by the Col/SF ratio and morphology due to coating. The biological functions of scaffolds with Col and SF coating show enhanced potential for promoting bone tissue formation, particularly the Col/SF (7:3) ratio, which is most suitable for bone augmentation in small defect areas.
Collapse
Affiliation(s)
- Jutakan Thonglam
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jirut Meesane
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
2
|
Joy S, Thomas NG. Gymnemic acid-conjugated gelatin scaffold for enhanced bone regeneration: A novel insight to tissue engineering. Biotechnol Appl Biochem 2023; 70:1652-1662. [PMID: 36942931 DOI: 10.1002/bab.2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023]
Abstract
Bone tissue engineering deals with the design of bone scaffolds. The selection of porous scaffold for osteoblast attachment and suppression of microbial infections are the major challenges that were addressed by designing gelatin scaffolds conjugated with gymnemic acid. Gelatin scaffold was prepared by loading gymnemic acid and morphological characterization, porosity, water absorption behavior, and biocompatibility of the scaffold were studied. The scaffold was introduced to the rat calvarial bone defect (BD) and analyzed the serum C reactive protein, alkaline phosphatase activity, and histology for 1 month to study the reconstruction. Adult Sprague-Dawley rats were used as sham operated control, animal with BD, and animal with BD which was implanted with scaffold (BDMB). The scanning electron micrograph revealed porous nature of scaffold. There was no significant difference in water absorption ability of scaffold. The C reactive protein was not observed in the serum collected on the 5th day postsurgery, supported the biocompatibility. The alkaline phosphatase activity in BDMB was increased when compared with BD on 15th and 20th day and then decreased. New bone tissue formation was detected with hematoxylin-eosin staining. The scaffold is effective in enhancing bone regeneration, which will have therapeutic significance in orthopedics and dentistry.
Collapse
Affiliation(s)
- Shilpa Joy
- Department of Biotechnology Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Nebu George Thomas
- Department of Periodontics, Pushpagiri College of Dental Sciences, Tiruvalla, India
| |
Collapse
|
3
|
Hassan S, Wang T, Shi K, Huang Y, Urbina Lopez ME, Gan K, Chen M, Willemen N, Kalam H, Luna-Ceron E, Cecen B, Elbait GD, Li J, Garcia-Rivera LE, Gurian M, Banday MM, Yang K, Lee MC, Zhuang W, Johnbosco C, Jeon O, Alsberg E, Leijten J, Shin SR. Self-oxygenation of engineered living tissues orchestrates osteogenic commitment of mesenchymal stem cells. Biomaterials 2023; 300:122179. [PMID: 37315386 PMCID: PMC10330822 DOI: 10.1016/j.biomaterials.2023.122179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
Oxygenating biomaterials can alleviate anoxic stress, stimulate vascularization, and improve engraftment of cellularized implants. However, the effects of oxygen-generating materials on tissue formation have remained largely unknown. Here, we investigate the impact of calcium peroxide (CPO)-based oxygen-generating microparticles (OMPs) on the osteogenic fate of human mesenchymal stem cells (hMSCs) under a severely oxygen deficient microenvironment. To this end, CPO is microencapsulated in polycaprolactone to generate OMPs with prolonged oxygen release. Gelatin methacryloyl (GelMA) hydrogels containing osteogenesis-inducing silicate nanoparticles (SNP hydrogels), OMPs (OMP hydrogels), or both SNP and OMP (SNP/OMP hydrogels) are engineered to comparatively study their effect on the osteogenic fate of hMSCs. OMP hydrogels associate with improved osteogenic differentiation under both normoxic and anoxic conditions. Bulk mRNAseq analyses suggest that OMP hydrogels under anoxia regulate osteogenic differentiation pathways more strongly than SNP/OMP or SNP hydrogels under either anoxia or normoxia. Subcutaneous implantations reveal a stronger host cell invasion in SNP hydrogels, resulting in increased vasculogenesis. Furthermore, time-dependent expression of different osteogenic factors reveals progressive differentiation of hMSCs in OMP, SNP, and SNP/OMP hydrogels. Our work demonstrates that endowing hydrogels with OMPs can induce, improve, and steer the formation of functional engineered living tissues, which holds potential for numerous biomedical applications, including tissue regeneration and organ replacement therapy.
Collapse
Affiliation(s)
- Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA; Department of Biology, College of Arts and Sciences, Khalifa University (Main Campus), Abu Dhabi, P.O. Box, 127788, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University (SAN Campus), Abu Dhabi, P.O. Box, 127788, United Arab Emirates
| | - Ting Wang
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA; Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Kun Shi
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yike Huang
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Maria Elizabeth Urbina Lopez
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Kaifeng Gan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Mo Chen
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Niels Willemen
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA; Leijten Lab, Department of Developmental Bioengineering, Faculty of Science and Technology, TechMed Centre, University Twente, Enschede, 7522 NB, the Netherlands
| | - Haroon Kalam
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Eder Luna-Ceron
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Gihan Daw Elbait
- Department of Biology, College of Arts and Sciences, Khalifa University (Main Campus), Abu Dhabi, P.O. Box, 127788, United Arab Emirates
| | - Jinghang Li
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Luis Enrique Garcia-Rivera
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Melvin Gurian
- Leijten Lab, Department of Developmental Bioengineering, Faculty of Science and Technology, TechMed Centre, University Twente, Enschede, 7522 NB, the Netherlands
| | - Mudassir Meraj Banday
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Kisuk Yang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Weida Zhuang
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA
| | - Castro Johnbosco
- Leijten Lab, Department of Developmental Bioengineering, Faculty of Science and Technology, TechMed Centre, University Twente, Enschede, 7522 NB, the Netherlands
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, 60612, USA; Departments of Orthopaedic Surgery, Pharmacology and Regenerative Medicine, and Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jeroen Leijten
- Leijten Lab, Department of Developmental Bioengineering, Faculty of Science and Technology, TechMed Centre, University Twente, Enschede, 7522 NB, the Netherlands.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Xu Z, Chen Y, Wang Y, Han W, Xu W, Liao X, Zhang T, Wang G. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 2023; 50:7027-7041. [PMID: 37382775 DOI: 10.1007/s11033-023-08502-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenfeng Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- Bioengineering College of Chongqing University, NO.174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
5
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
6
|
Venkatraman SK, Swamiappan S. Review on calcium- and magnesium-based silicates for bone tissue engineering applications. J Biomed Mater Res A 2020; 108:1546-1562. [PMID: 32170908 DOI: 10.1002/jbm.a.36925] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Bone is a self-engineered structural component of the human body with multifaceted mechanical strength, which provides indomitable support to the effective functioning of the human body. It is indispensable to find a suitable biomaterial for substituting the bone as the bone substitute material requirement is very high due to the rate of bone fracture and infection lead to osteoporosis in human beings increases rapidly. It is not an easy task to design a material with good apatite deposition ability, a faster rate of dissolution, superior resorbability, high mechanical strength, and significant bactericidal activity. Since the synthetic hydroxyapatite was not able to achieve the dahlite phase of hydroxyapatite (natural bone mineral phase), silicates emerged as an alternate biomaterial to meet the need for bone graft substitutes. All silicates do not exhibit the properties required for bone graft substitutes, as their composition and methodology adopted for the synthesis are different. Calcium, magnesium, and silicon play a major role in the formation of bone mineral and their metabolism during bone formation. In this review, the relationship between composition and activity of calcium, magnesium-based silicates have been discussed along with the future scope of these materials for hard tissue engineering applications.
Collapse
Affiliation(s)
- Senthil Kumar Venkatraman
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sasikumar Swamiappan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Arriaga MA, Ding MH, Gutierrez AS, Chew SA. The Application of microRNAs in Biomaterial Scaffold-Based Therapies for Bone Tissue Engineering. Biotechnol J 2019; 14:e1900084. [PMID: 31166084 DOI: 10.1002/biot.201900084] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Indexed: 12/13/2022]
Abstract
In recent years, the application of microRNAs (miRNAs) or anti-microRNAs (anti-miRNAs) that can induce expression of the runt-related transcription factor 2 (RUNX2), a master regulator of osteogenesis, has been investigated as a promising alternative bone tissue engineering strategy. In this review, biomaterial scaffold-based applications that have been used to deliver cells expressing miRNAs or anti-miRNAs that induce expression of RUNX2 for bone tissue engineering are discussed. An overview of the components of the scaffold-based therapies including the miRNAs/anti-miRNAs, cell types, gene delivery vectors, and scaffolds that have been applied are provided. To date, there have been nine miRNAs/anti-miRNAs (i.e., miRNA-26a, anti-miRNA-31, anti-miRNA-34a, miRNA-135, anti-miRNA-138, anti-miRNA-146a, miRNA-148b, anti-miRNA-221, and anti-miRNA-335) that have been incorporated into scaffold-based bone tissue engineering applications and investigated in an in vivo bone critical-sized defect model. For all of the biomaterial scaffold-based miRNA therapies that have been developed thus far, cells that are transfected or transduced with the miRNA/anti-miRNA are loaded into the scaffolds and implanted at the site of interest instead of locally delivering the miRNA/anti-miRNAs directly from the scaffolds. Thus, future work may focus on developing biomaterial scaffolds to deliver miRNAs or anti-miRNAs into cells in vivo.
Collapse
Affiliation(s)
- Marco A Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - May-Hui Ding
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Astrid S Gutierrez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| |
Collapse
|
8
|
The role of fish scale derived scaffold and platelet rich plasma in healing of rabbit tibial defect: an experimental study. ACTA VET BRNO 2019. [DOI: 10.2754/avb201887040363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fish scale is rich in collagen type I and hydroxyapatite, resembling bone structure. It is readily available, cost effective and can compensate for the limitations of grafting methods such as unavailability, zoonotic disease transmission, and high cost. The aim of this study was to evaluate in vivo the fish scale potential and the possible synergistic effect of platelet rich plasma (PRP) with this scaffold in bone regeneration. Fifteen male white New Zealand rabbits were randomly divided into six groups, each involving 5 limbs. Full thickness bicortical defects were created in the proximal tibia of both pelvic limbs of rabbits. The defect was left untreated in the negative control group. In experimental groups the defect was filled with PRP (group 1), cellular fish scale (group 2), combination of cellular fish scale and PRP (group 3), acellular fish scale (group 4), and a combination of acellular fish scale and PRP (group 5). Fresh fish scales were decellularized to increase biocompatibility and reduce immunity reactions. Decellularization was confirmed by DAPI (4',6-diamidino-2-phenylindole) staining. The microstructure and surface characteristics of fish scales were assessed by scanning electron microscopy (SEM). Histopathological evaluation of bone healing was performed on day 56. Although there was no significant difference in the bone union among experimental groups, the union was superior in all experimental groups compared to control. Spongiosa and cortex formation were superior in the acellular groups. Furthermore, PRP promoted bone marrow formation. We concluded that fish scale is a biocompatible scaffold with a high regenerative potential.
Collapse
|
9
|
Chen X, Fan H, Deng X, Wu L, Yi T, Gu L, Zhou C, Fan Y, Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E960. [PMID: 30469378 PMCID: PMC6266401 DOI: 10.3390/nano8110960] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
In the process of bone regeneration, new bone formation is largely affected by physico-chemical cues in the surrounding microenvironment. Tissue cells reside in a complex scaffold physiological microenvironment. The scaffold should provide certain circumstance full of structural cues to enhance multipotent mesenchymal stem cell (MSC) differentiation, osteoblast growth, extracellular matrix (ECM) deposition, and subsequent new bone formation. This article reviewed advances in fabrication technology that enable the creation of biomaterials with well-defined pore structure and surface topography, which can be sensed by host tissue cells (esp., stem cells) and subsequently determine cell fates during differentiation. Three important cues, including scaffold pore structure (i.e., porosity and pore size), grain size, and surface topography were studied. These findings improve our understanding of how the mechanism scaffold microenvironmental cues guide bone tissue regeneration.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hongyuan Fan
- Scholl of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaowei Deng
- Department of Civil Engineering, The University of Hongkong, Pokfulam, Hongkong 999077, China.
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Tao Yi
- Scholl of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Pacelli S, Rampetsreiter K, Modaresi S, Subham S, Chakravarti AR, Lohfeld S, Detamore MS, Paul A. Fabrication of a Double-Cross-Linked Interpenetrating Polymeric Network (IPN) Hydrogel Surface Modified with Polydopamine to Modulate the Osteogenic Differentiation of Adipose-Derived Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24955-24962. [PMID: 29969894 PMCID: PMC6535093 DOI: 10.1021/acsami.8b05200] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogel surface properties can be modified to form bioactive interfaces to modulate the osteogenic differentiation of stem cells. In this work, a hydrogel made of gelatin methacrylamide (GelMA) and alginate was designed and tested as a scaffold to control stem-cell osteogenic differentiation. The hydrogel's surface was treated with polydopamine (pDA) to create an adhesive layer for the adsorption of the osteoinductive drug dexamethasone (Dex). The presence of the pDA coating enhanced Dex adsorption and retention over 21 days. This effect resulted in a delay in the osteogenic differentiation of hASCs cultured on the hydrogel treated with a pDA layer.
Collapse
Affiliation(s)
- Settimio Pacelli
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Kyle Rampetsreiter
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Saman Modaresi
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Siddharth Subham
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Aparna R. Chakravarti
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Stefan Lohfeld
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
- Biomechanics Research Centre (BMEC), Mechanical and Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, H91 TK33 Ireland
| | - Michael S. Detamore
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Arghya Paul
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
11
|
Hanafy AF, Ali HSM, El Achy SN, Habib ELSE. Dual effect biodegradable ciprofloxacin loaded implantable matrices for osteomyelitis: controlled release and osteointegration. Drug Dev Ind Pharm 2018; 44:1023-1033. [DOI: 10.1080/03639045.2018.1430820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ahmed F. Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Research and Development Department, European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Samar N. El Achy
- Department of Surgical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - EL-Sayed E. Habib
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Song MJ, Amirian J, Linh NTB, Lee BT. Bone morphogenetic protein-2 immobilization on porous PCL-BCP-Col composite scaffolds for bone tissue engineering. J Appl Polym Sci 2017. [DOI: 10.1002/app.45186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Myeong-Jin Song
- Department of Regenerative Medicine; College of Medicine, Soonchunhyang University 366-1; Ssangyong-dong Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
| | - Jhaleh Amirian
- Institute of Tissue Regeneration, Soonchunhyang University 366-1; Ssangyong-dong Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
| | - Nguyen Thuy Ba Linh
- Institute of Tissue Regeneration, Soonchunhyang University 366-1; Ssangyong-dong Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine; College of Medicine, Soonchunhyang University 366-1; Ssangyong-dong Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
- Institute of Tissue Regeneration, Soonchunhyang University 366-1; Ssangyong-dong Cheonan-City, ChungCheongNam-Do 330-090 Republic of Korea
| |
Collapse
|
13
|
Thermomechanical properties of poly(lactic acid) films reinforced with hydroxyapatite and regenerated cellulose microfibers. J Appl Polym Sci 2014. [DOI: 10.1002/app.40911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Xu W, Liao X, Zhang L, Liu B. Tissue induction, the relationship between biomaterial’s microenvironment and mesenchymal stem cell differentiation. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.61011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|