1
|
Srivastava LK, Ehrlicher AJ. Sensing the squeeze: nuclear mechanotransduction in health and disease. Nucleus 2024; 15:2374854. [PMID: 38951951 PMCID: PMC11221475 DOI: 10.1080/19491034.2024.2374854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.
Collapse
Affiliation(s)
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Structural Biology, McGill University, Montreal, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Sakamoto N, Ito K, Ii S, Conway DE, Ueda Y, Nagatomi J. A homeostatic role of nucleus-actin filament coupling in the regulation of cellular traction forces in fibroblasts. Biomech Model Mechanobiol 2024; 23:1289-1298. [PMID: 38502433 DOI: 10.1007/s10237-024-01839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Cellular traction forces are contractile forces that depend on the material/substrate stiffness and play essential roles in sensing mechanical environments and regulating cell morphology and function. Traction forces are primarily generated by the actin cytoskeleton and transmitted to the substrate through focal adhesions. The cell nucleus is also believed to be involved in the regulation of this type of force; however, the role of the nucleus in cellular traction forces remains unclear. In this study, we explored the effects of nucleus-actin filament coupling on cellular traction forces in human dermal fibroblasts cultured on substrates with varying stiffness (5, 15, and 48 kPa). To investigate these effects, we transfected the cells with a dominant-negative Klarsicht/ANC-1/Syne homology (DN-KASH) protein that was designed to displace endogenous linker proteins and disrupt nucleus-actin cytoskeleton connections. The force that exists between the cytoskeleton and the nucleus (nuclear tension) was also evaluated with a fluorescence resonance energy transfer (FRET)-based tension sensor. We observed a biphasic change in cellular traction forces with a peak at 15 kPa, regardless of DN-KASH expression, that was inversely correlated with the nuclear tension. In addition, the relative magnitude and distribution of traction forces in nontreated wild-type cells were similar across different stiffness conditions, while DN-KASH-transfected cells exhibited a different distribution pattern that was impacted by the substrate stiffness. These results suggest that the nucleus-actin filament coupling play a homeostatic role by maintaining the relative magnitude of cellular traction forces in fibroblasts under different stiffness conditions.
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| | - Keisuke Ito
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Satoshi Ii
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, 140W 19th Avenue, Columbus, OH, USA
| | - Yuki Ueda
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Jiro Nagatomi
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, 29634-0905, USA
| |
Collapse
|
3
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
4
|
Gurusaran M, Erlandsen BS, Davies OR. The crystal structure of SUN1-KASH6 reveals an asymmetric LINC complex architecture compatible with nuclear membrane insertion. Commun Biol 2024; 7:138. [PMID: 38291267 PMCID: PMC10827754 DOI: 10.1038/s42003-024-05794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The LINC complex transmits cytoskeletal forces into the nucleus to control the structure and movement of nuclear contents. It is formed of nuclear SUN and cytoplasmic KASH proteins, which interact within the nuclear lumen, immediately below the outer nuclear membrane. However, the symmetrical location of KASH molecules within SUN-KASH complexes in previous crystal structures has been difficult to reconcile with the steric requirements for insertion of their immediately upstream transmembrane helices into the outer nuclear membrane. Here, we report the crystal structure of the SUN-KASH complex between SUN1 and JAW1/LRMP (KASH6) in an asymmetric 9:6 configuration. This intertwined assembly involves two distinct KASH conformations such that all six KASH molecules emerge on the same molecular surface. Hence, they are ideally positioned for insertion of upstream sequences into the outer nuclear membrane. Thus, we report a SUN-KASH complex architecture that appears to be directly compatible with its biological role.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Benedikte S Erlandsen
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
5
|
Gurusaran M, Biemans JJ, Wood CW, Davies OR. Molecular insights into LINC complex architecture through the crystal structure of a luminal trimeric coiled-coil domain of SUN1. Front Cell Dev Biol 2023; 11:1144277. [PMID: 37416798 PMCID: PMC10320395 DOI: 10.3389/fcell.2023.1144277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The LINC complex, consisting of interacting SUN and KASH proteins, mechanically couples nuclear contents to the cytoskeleton. In meiosis, the LINC complex transmits microtubule-generated forces to chromosome ends, driving the rapid chromosome movements that are necessary for synapsis and crossing over. In somatic cells, it defines nuclear shape and positioning, and has a number of specialised roles, including hearing. Here, we report the X-ray crystal structure of a coiled-coiled domain of SUN1's luminal region, providing an architectural foundation for how SUN1 traverses the nuclear lumen, from the inner nuclear membrane to its interaction with KASH proteins at the outer nuclear membrane. In combination with light and X-ray scattering, molecular dynamics and structure-directed modelling, we present a model of SUN1's entire luminal region. This model highlights inherent flexibility between structured domains, and raises the possibility that domain-swap interactions may establish a LINC complex network for the coordinated transmission of cytoskeletal forces.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jelle J. Biemans
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Christopher W. Wood
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
6
|
Gurusaran M, Davies OR. A molecular mechanism for LINC complex branching by structurally diverse SUN-KASH 6:6 assemblies. eLife 2021; 10:60175. [PMID: 33393904 PMCID: PMC7800377 DOI: 10.7554/elife.60175] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex mechanically couples cytoskeletal and nuclear components across the nuclear envelope to fulfil a myriad of cellular functions, including nuclear shape and positioning, hearing, and meiotic chromosome movements. The canonical model is that 3:3 interactions between SUN and KASH proteins underlie the nucleocytoskeletal linkages provided by the LINC complex. Here, we provide crystallographic and biophysical evidence that SUN-KASH is a constitutive 6:6 complex in which two constituent 3:3 complexes interact head-to-head. A common SUN-KASH topology is achieved through structurally diverse 6:6 interaction mechanisms by distinct KASH proteins, including zinc-coordination by Nesprin-4. The SUN-KASH 6:6 interface provides a molecular mechanism for the establishment of integrative and distributive connections between 3:3 structures within a branched LINC complex network. In this model, SUN-KASH 6:6 complexes act as nodes for force distribution and integration between adjacent SUN and KASH molecules, enabling the coordinated transduction of large forces across the nuclear envelope.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Owen Richard Davies
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
7
|
Bouzid T, Kim E, Riehl BD, Esfahani AM, Rosenbohm J, Yang R, Duan B, Lim JY. The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J Biol Eng 2019; 13:68. [PMID: 31406505 PMCID: PMC6686368 DOI: 10.1186/s13036-019-0197-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/28/2019] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) show tremendous promise as a cell source for tissue engineering and regenerative medicine, and are understood to be mechanosensitive to external mechanical environments. In recent years, increasing evidence points to nuclear envelope proteins as a key player in sensing and relaying mechanical signals in MSCs to modulate cellular form, function, and differentiation. Of particular interest is the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex that includes nesprin and SUN. In this review, the way in which cells can sense external mechanical environments through an intact nuclear envelope and LINC complex proteins will be briefly described. Then, we will highlight the current body of literature on the role of the LINC complex in regulating MSC function and fate decision, without and with external mechanical loading conditions. Our review and suggested future perspective may provide a new insight into the understanding of MSC mechanobiology and related functional tissue engineering applications.
Collapse
Affiliation(s)
- Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall, Lincoln, NE 68588 USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall, Lincoln, NE 68588 USA
| | - Brandon D. Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall, Lincoln, NE 68588 USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall, Lincoln, NE 68588 USA
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall, Lincoln, NE 68588 USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall, Lincoln, NE 68588 USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE USA
| | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall, Lincoln, NE 68588 USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall, Lincoln, NE 68588 USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|