1
|
Kim I, Elliott JC, Lawanprasert A, Wood GM, Simon JC, Medina SH. Real-Time, In Situ Imaging of Macrophages via Phase-Change Peptide Nanoemulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301673. [PMID: 37452514 PMCID: PMC10787802 DOI: 10.1002/smll.202301673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Macrophages are specialized phagocytes that play central roles in immunity and tissue repair. Their diverse functionalities have led to an evolution of new allogenic and autologous macrophage products. However, realizing the full therapeutic potential of these cell-based therapies requires development of imaging technologies that can track immune cell migration within tissues in real-time. Such innovations will not only inform treatment regimens and empower interpretation of therapeutic outcomes but also enable prediction and early intervention during adverse events. Here, phase-changing nanoemulsion contrast agents are reported that permit real-time, continuous, and high-fidelity ultrasound imaging of macrophages in situ. Using a de novo designed peptide emulsifier, liquid perfluorocarbon nanoemulsions are prepared and show that rational control over interfacial peptide assembly affords formulations with tunable acoustic sensitivity, macrophage internalization, and in cellulo stability. Imaging experiments demonstrate that emulsion-loaded macrophages can be readily visualized using standard diagnostic B-mode and Doppler ultrasound modalities. This allows on-demand and long-term tracking of macrophages within porcine coronary arteries, as an exemplary model. The results demonstrate that this platform is poised to open new opportunities for non-invasive, contrast-enhanced imaging of cell-based immunotherapies in tissues, while leveraging the low-cost, portable, and safe nature of diagnostic ultrasound.
Collapse
Affiliation(s)
- Inhye Kim
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Jacob C Elliott
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Atip Lawanprasert
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Grace M Wood
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Julianna C Simon
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
2
|
Pattinson O, Keller SB, Evans ND, Pierron F, Carugo D. An Acoustic Device for Ultra High-Speed Quantification of Cell Strain During Cell-Microbubble Interaction. ACS Biomater Sci Eng 2023; 9:5912-5923. [PMID: 37747762 PMCID: PMC10565720 DOI: 10.1021/acsbiomaterials.3c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Microbubbles utilize high-frequency oscillations under ultrasound stimulation to induce a range of therapeutic effects in cells, often through mechanical stimulation and permeabilization of cells. One of the largest challenges remaining in the field is the characterization of interactions between cells and microbubbles at therapeutically relevant frequencies. Technical limitations, such as employing sufficient frame rates and obtaining sufficient image resolution, restrict the quantification of the cell's mechanical response to oscillating microbubbles. Here, a novel methodology was developed to address many of these limitations and improve the image resolution of cell-microbubble interactions at high frame rates. A compact acoustic device was designed to house cells and microbubbles as well as a therapeutically relevant acoustic field while being compatible with a Shimadzu HPV-X camera. Cell viability tests confirmed the successful culture and proliferation of cells, and the attachment of DSPC- and cationic DSEPC-microbubbles to osteosarcoma cells was quantified. Microbubble oscillation was observed within the device at a frame rate of 5 million FPS, confirming suitable acoustic field generation and ultra high-speed image capture. High spatial resolution in these images revealed observable deformation in cells following microbubble oscillation and supported the first use of digital image correlation for strain quantification in a single cell. The novel acoustic device provided a simple, effective method for improving the spatial resolution of cell-microbubble interaction images, presenting the opportunity to develop an understanding of the mechanisms driving the therapeutic effects of oscillating microbubbles upon ultrasound exposure.
Collapse
Affiliation(s)
- Oliver Pattinson
- Faculty
of Engineering and Physical Sciences, University
of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Sara B. Keller
- Department
of Engineering Science, University of Oxford, Old Road, Headington, Oxford OX3 7LD, U.K.
| | - Nicholas D. Evans
- Faculty
of Engineering and Physical Sciences, University
of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Fabrice Pierron
- Faculty
of Engineering and Physical Sciences, University
of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Dario Carugo
- Nuffield
Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences
(NDORMS), University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom
| |
Collapse
|
3
|
Beekers I, Langeveld SAG, Meijlink B, van der Steen AFW, de Jong N, Verweij MD, Kooiman K. Internalization of targeted microbubbles by endothelial cells and drug delivery by pores and tunnels. J Control Release 2022; 347:460-475. [PMID: 35545132 DOI: 10.1016/j.jconrel.2022.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/09/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Ultrasound insonification of microbubbles can locally enhance drug delivery by increasing the cell membrane permeability. To aid development of a safe and effective therapeutic microbubble, more insight into the microbubble-cell interaction is needed. In this in vitro study we aimed to investigate the initial 3D morphology of the endothelial cell membrane adjacent to individual microbubbles (n = 301), determine whether this morphology was affected upon binding and by the type of ligand on the microbubble, and study its influence on microbubble oscillation and the drug delivery outcome. High-resolution 3D confocal microscopy revealed that targeted microbubbles were internalized by endothelial cells, while this was not the case for non-targeted or IgG1-κ control microbubbles. The extent of internalization was ligand-dependent, since αvβ3-targeted microbubbles were significantly more internalized than CD31-targeted microbubbles. Ultra-high-speed imaging (~17 Mfps) in combination with high-resolution confocal microscopy (n = 246) showed that microbubble internalization resulted in a damped microbubble oscillation upon ultrasound insonification (2 MHz, 200 kPa peak negative pressure, 10 cycles). Despite damped oscillation, the cell's susceptibility to sonoporation (as indicated by PI uptake) was increased for internalized microbubbles. Monitoring cell membrane integrity (n = 230) showed the formation of either a pore, for intracellular delivery, or a tunnel (i.e. transcellular perforation), for transcellular delivery. Internalized microbubbles caused fewer transcellular perforations and smaller pore areas than non-internalized microbubbles. In conclusion, studying microbubble-mediated drug delivery using a state-of-the-art imaging system revealed receptor-mediated microbubble internalization and its effect on microbubble oscillation and resulting membrane perforation by pores and tunnels.
Collapse
Affiliation(s)
- Inés Beekers
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Health, ORTEC B.V., Houtsingel 5, 2719 EA Zoetermeer, the Netherlands.
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Bram Meijlink
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Building 22, Room D218, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands; Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Building 22, Room D218, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
4
|
Janjic J, Larsson MK, Bjällmark A. In-vitro sonothrombolysis using thick-shelled polymer microbubbles - a comparison with thin-shelled microbubbles. Cardiovasc Ultrasound 2020; 18:12. [PMID: 32366318 PMCID: PMC7197129 DOI: 10.1186/s12947-020-00194-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vascular thrombosis can be treated pharmacologically, however, serious shortcomings such as bleeding may occur. Several studies suggest that sonothrombolysis can induce lysis of the clots using ultrasound. Moreover, intravenously injected thin-shelled microbubbles (MBs) combined with ultrasound can further improve clot lysis. Thick-shelled MBs have been used for drug delivery, targeting and multimodal imaging. However, their capability to enhance sonothrombolysis is unknown. In this study, using an in-vitro set-up, the enhancement of clot lysis using ultrasound and thick-shelled MBs was investigated. Thin-shelled MBs was used for comparison. METHOD The main components in the in-vitro set-up was a vessel mimicking phantom, a pressure mearing system and programmable ultrasound machine. Blood clots were injected and entrapped on a pore mesh in the vessel phantom. Four different protocols for ultrasound transmission and MB exposure (7 blood clots/protocol) were considered together with a control test were no MBs and ultrasound were used. For each protocol, ultrasound exposure of 20 min was used. The upstream pressure of the partially occluded mesh was continuously measured to assess clot burden. At the end of each protocol blood clots were removed from the phantom and the clot mass loss was computed. RESULTS For the thick-shelled MBs no difference in clot mass loss compared with the control tests was found. A 10% increase in the clot mass loss compared with the control tests was found when using thin-shelled MBs and low pressure/long pulses ultrasound exposure. Similarly, in terms of upstream pressure over exposure time, no differences were found when using the thick-shelled MBs, whereas thin-shelled MBs showed a 15% decrease achieved within the first 4 min of ultrasound exposure. CONCLUSION No increase in clot lysis was achieved using thick-shelled MBs as demonstrated by no significant change in clot mass or upstream pressure. Although thick-shelled MBs are promising for targeting and drug delivery, they do not enhance clot lysis when considering the ultrasound sequences used in this study. On the other hand, ultrasound in combination with thin-shelled MBs can facilitate thrombolysis when applying long ultrasound pulses with low pressure.
Collapse
Affiliation(s)
- Jovana Janjic
- Biosense Webster, Johnson & Johnson Medical, Via del Mare 56, 00071 Pomezia, Rome, Italy
| | - Malin K Larsson
- Karolinska University Hospital, Eugeniavägen 3, SE-171 76, Stockholm, Sweden
| | - Anna Bjällmark
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Gjuterigatan 5, SE-553 18, Jönköping, Sweden.
| |
Collapse
|
5
|
Dogra P, Butner JD, Nizzero S, Ruiz Ramírez J, Noureddine A, Peláez MJ, Elganainy D, Yang Z, Le AD, Goel S, Leong HS, Koay EJ, Brinker CJ, Cristini V, Wang Z. Image-guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1628. [PMID: 32314552 PMCID: PMC7507140 DOI: 10.1002/wnan.1628] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
While plasma concentration kinetics has traditionally been the predictor of drug pharmacological effects, it can occasionally fail to represent kinetics at the site of action, particularly for solid tumors. This is especially true in the case of delivery of therapeutic macromolecules (drug-loaded nanomaterials or monoclonal antibodies), which can experience challenges to effective delivery due to particle size-dependent diffusion barriers at the target site. As a result, disparity between therapeutic plasma kinetics and kinetics at the site of action may exist, highlighting the importance of target site concentration kinetics in determining the pharmacodynamic effects of macromolecular therapeutic agents. Assessment of concentration kinetics at the target site has been facilitated by non-invasive in vivo imaging modalities. This allows for visualization and quantification of the whole-body disposition behavior of therapeutics that is essential for a comprehensive understanding of their pharmacokinetics and pharmacodynamics. Quantitative non-invasive imaging can also help guide the development and parameterization of mathematical models for descriptive and predictive purposes. Here, we present a review of the application of state-of-the-art imaging modalities for quantitative pharmacological evaluation of therapeutic nanoparticles and monoclonal antibodies, with a focus on their integration with mathematical models, and identify challenges and opportunities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Joseph D Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Sara Nizzero
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Javier Ruiz Ramírez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - María J Peláez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Applied Physics Graduate Program, Rice University, Houston, Texas, USA
| | - Dalia Elganainy
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhen Yang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anh-Dung Le
- Nanoscience and Microsystems Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - Shreya Goel
- Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eugene J Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering and UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
6
|
Witte K, Späth A, Finizio S, Donnelly C, Watts B, Sarafimov B, Odstrcil M, Guizar-Sicairos M, Holler M, Fink RH, Raabe J. From 2D STXM to 3D Imaging: Soft X-ray Laminography of Thin Specimens. NANO LETTERS 2020; 20:1305-1314. [PMID: 31951418 DOI: 10.1021/acs.nanolett.9b04782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
X-ray tomography has become an indispensable tool for studying complex 3D interior structures with high spatial resolution. Three-dimensional imaging using soft X-rays offers powerful contrast mechanisms but has seen limited success with tomography due to the restrictions imposed by the much lower energy of the probe beam. The generalized geometry of laminography, characterized by a tilted axis of rotation, provides nm-scale 3D resolution for the investigation of extended (mm range) but thin (μm to nm) samples that are well suited to soft X-ray studies. This work reports on the implementation of soft X-ray laminography (SoXL) at the scanning transmission X-ray spectromicroscope of the PolLux beamline at the Swiss Light Source, Paul Scherrer Institut, which enables 3D imaging of extended specimens from 270 to 1500 eV. Soft X-ray imaging provides contrast mechanisms for both chemical sensitivity to molecular bonds and oxidation states and magnetic dichroism due to the much stronger attenuation of X-rays in this energy range. The presented examples of applications range from functionalized nanomaterials to biological photonic crystals and sophisticated nanoscaled magnetic domain patterns, thus illustrating the wide fields of research that can benefit from SoXL.
Collapse
Affiliation(s)
- Katharina Witte
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Andreas Späth
- Department Chemie und Pharmazie, Physikalische Chemie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Simone Finizio
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Claire Donnelly
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , United Kingdom
| | - Benjamin Watts
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Blagoj Sarafimov
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Michal Odstrcil
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Manuel Guizar-Sicairos
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Mirko Holler
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Rainer H Fink
- Department Chemie und Pharmazie, Physikalische Chemie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Jörg Raabe
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| |
Collapse
|
7
|
Josefsson L, Goodall D, Emmer Å. Implementation of a ultraviolet area imaging detector for analysis of polyvinyl alcohol microbubbles by capillary electrophoresis. J Chromatogr A 2020; 1619:460899. [PMID: 31983415 DOI: 10.1016/j.chroma.2020.460899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 11/19/2022]
Abstract
Contrast agents are widely used to enhance the image quality in clinical imaging using e.g. ultrasound. The contrast agents used for ultrasound imaging are mainly microbubbles (MBs) with a soft or hard shell encapsulating a core of gas. In the present study, MBs with a hard shell of polyvinyl alcohol (PVA), and a core of air were analysed in a capillary electrophoretic system using a UV area imaging detector. The detector was operating at 3 wavelengths; 214 nm, 255 nm and 525 nm, and the highest absorbance for individual PVA-MBs were obtained at 214 nm. Two detection windows and a vertical loop capillary position enabled tracking of the PVA-MBs both in an upward and a downward flow direction, where PVA-MBs had different flow distributions and slightly higher average flow velocity upwards, attributed to temperature differences in the capillary that was part within the instrument and part outside. The tracking also allowed counting and quantification of the PVA-MBs. Separation of PVA-MBs from proteins present in human blood plasma was achieved, with multi-wavelength imaging showing best contrast at 525 nm. The PVA-MBs absolute values of negative zeta potential and anionic mobility when injected from plasma in the pH 12 background electrolyte are higher than those obtained for MBs injected from buffer, consistent with their increased negative charge due to a protein corona coating of the PVA-MBs.
Collapse
Affiliation(s)
- Leila Josefsson
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | | | - Åsa Emmer
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
8
|
Beguin E, Bau L, Shrivastava S, Stride E. Comparing Strategies for Magnetic Functionalization of Microbubbles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1829-1840. [PMID: 30574777 DOI: 10.1021/acsami.8b18418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The advancement of ultrasound-mediated therapy has stimulated the development of drug-loaded microbubble agents that can be targeted to a region of interest through an applied magnetic field prior to ultrasound activation. However, the need to incorporate therapeutic molecules while optimizing the responsiveness to both magnetic and acoustic fields and maintaining adequate stability poses a considerable challenge for microbubble synthesis. The aim of this study was to evaluate three different methods for incorporating iron oxide nanoparticles (IONPs) into phospholipid-coated microbubbles using (1) hydrophobic IONPs within an oil layer below the microbubble shell, (2) phospholipid-stabilized IONPs within the shell, or (3) hydrophilic IONPs noncovalently bound to the surface of the microbubble. All microbubbles exhibited similar acoustic response at both 1 and 7 MHz. The half-life of the microbubbles was more than doubled by the addition of IONPs by using both surface and phospholipid-mediated loading methods, provided the lipid used to coat the IONPs was the same as that constituting the microbubble shell. The highest loading of IONPs per microbubble was also achieved with the surface loading method, and these microbubbles were the most responsive to an applied magnetic field, showing a 3-fold increase in the number of retained microbubbles compared to other groups. For the purpose of drug delivery, surface loading of IONPs could restrict the attachment of hydrophilic drugs to the microbubble shell, but hydrophobic drugs could still be incorporated. In contrast, although the incorporation of phospholipid IONPs produced more weakly magnetic microbubbles, it would not interfere with hydrophilic drug loading on the surface of the microbubble.
Collapse
Affiliation(s)
- Estelle Beguin
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Luca Bau
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Shamit Shrivastava
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering , University of Oxford , Oxford OX3 7DQ , U.K
| |
Collapse
|
9
|
Molecular Imaging of a New Multimodal Microbubble for Adhesion Molecule Targeting. Cell Mol Bioeng 2018; 12:15-32. [PMID: 31719897 PMCID: PMC6816780 DOI: 10.1007/s12195-018-00562-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Inflammation is an important risk-associated component of many diseases and can be diagnosed by molecular imaging of specific molecules. The aim of this study was to evaluate the possibility of targeting adhesion molecules on inflammation-activated endothelial cells and macrophages using an innovative multimodal polyvinyl alcohol-based microbubble (MB) contrast agent developed for diagnostic use in ultrasound, magnetic resonance, and nuclear imaging. Methods We assessed the binding efficiency of antibody-conjugated multimodal contrast to inflamed murine or human endothelial cells (ECs), and to peritoneal macrophages isolated from rats with peritonitis, utilizing the fluorescence characteristics of the MBs. Single-photon emission tomography (SPECT) was used to illustrate 99mTc-labeled MB targeting and distribution in an experimental in vivo model of inflammation. Results Flow cytometry and confocal microscopy showed that binding of antibody-targeted MBs to the adhesion molecules ICAM-1, VCAM-1, or E-selectin, expressed on cytokine-stimulated ECs, was up to sixfold higher for human and 12-fold higher for mouse ECs, compared with that of non-targeted MBs. Under flow conditions, both VCAM-1- and E-selectin-targeted MBs adhered more firmly to stimulated human ECs than to untreated cells, while VCAM-1-targeted MBs adhered best to stimulated murine ECs. SPECT imaging showed an approximate doubling of signal intensity from the abdomen of rats with peritonitis, compared with healthy controls, after injection of anti-ICAM-1-MBs. Conclusions This novel multilayer contrast agent can specifically target adhesion molecules expressed as a result of inflammatory stimuli in vitro, and has potential for use in disease-specific multimodal diagnostics in vivo using antibodies against targets of interest.
Collapse
|
10
|
Cerroni B, Cicconi R, Oddo L, Scimeca M, Bonfiglio R, Bernardini R, Palmieri G, Domenici F, Bonanno E, Mattei M, Paradossi G. In vivo biological fate of poly(vinylalcohol) microbubbles in mice. Heliyon 2018; 4:e00770. [PMID: 30238062 PMCID: PMC6143702 DOI: 10.1016/j.heliyon.2018.e00770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 11/18/2022] Open
Abstract
Microbubbles (MBs) are used in clinical practice as vascular ultrasound contrast agents, and are gaining popularity as a platform supporting multimodal imaging and targeted therapy, facilitating drug delivery under ultrasound exposure. Here, we report on the in vivo biological impact of newly discovered MBs with promising features as a multimodal theranostic device. The shell of the air-filled MBs is made of the poly(vinyl alcohol) (PVA), a well-established, FDA-approved polymer. Nevertheless, as size, shape and dispersity can significantly impact the biological response of particulate systems, studying their fate after administration is crucial. The safety and the biodistribution of PVA MBs were analysed in vivo and ex vivo by coupling a near infrared (NIR) fluorophore on their shell: MBs accumulated mainly in liver and spleen at 24 hours post-injection with their clearance from the spleen 7 days post-dosing. A possible way of elimination was identified in macrophages ability to engulf MBs both in vitro and in vivo. One month post-dosing, transmission electron microscopy (TEM) highlighted the lack of relevant defects and the elimination of PVA MBs by Kupffer cells. This study is the first successful attempt to fill the lack of knowledge necessary to bring PVA MBs one step closer to their possible clinical use.
Collapse
Affiliation(s)
- Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
- Corresponding author.
| | - Rosella Cicconi
- Centro Servizi Interdipartimentale-Stazione per la Tecnologia Animale, Università degli Studi di Roma “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - Letizia Oddo
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Manuel Scimeca
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
- Università San Raffaele, via di Val Cannuta 247, 00166, Rome, Italy
- OrchideaLAB S.r.l., via del Grecale 6, 00067 Morlupo, Rome, Italy1
| | - Rita Bonfiglio
- Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma “Tor Vergata”, via Montpellier 1, Rome 00133, Italy
| | - Roberta Bernardini
- Centro Servizi Interdipartimentale-Stazione per la Tecnologia Animale, Università degli Studi di Roma “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
| | - Graziana Palmieri
- Centro Servizi Interdipartimentale-Stazione per la Tecnologia Animale, Università degli Studi di Roma “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
- Plaisant Srl, Via Castel Romano 100, 00128 Rome, Italy
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Elena Bonanno
- Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma “Tor Vergata”, via Montpellier 1, Rome 00133, Italy
| | - Maurizio Mattei
- Centro Servizi Interdipartimentale-Stazione per la Tecnologia Animale, Università degli Studi di Roma “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Zullino S, Argenziano M, Stura I, Guiot C, Cavalli R. From Micro- to Nano-Multifunctional Theranostic Platform: Effective Ultrasound Imaging Is Not Just a Matter of Scale. Mol Imaging 2018; 17:1536012118778216. [PMID: 30213222 PMCID: PMC6144578 DOI: 10.1177/1536012118778216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022] Open
Abstract
Ultrasound Contrast Agents (UCAs) consisting of gas-filled-coated Microbubbles (MBs) with diameters between 1 and 10 µm have been used for a number of decades in diagnostic imaging. In recent years, submicron contrast agents have proven to be a viable alternative to MBs for ultrasound (US)-based applications for their capability to extravasate and accumulate in the tumor tissue via the enhanced permeability and retention effect. After a short overview of the more recent approaches to ultrasound-mediated imaging and therapeutics at the nanoscale, phase-change contrast agents (PCCAs), which can be phase-transitioned into highly echogenic MBs by means of US, are here presented. The phenomenon of acoustic droplet vaporization (ADV) to produce bubbles is widely investigated for both imaging and therapeutic applications to develop promising theranostic platforms.
Collapse
Affiliation(s)
- Sara Zullino
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Ilaria Stura
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Caterina Guiot
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|