1
|
Kong L, Yuan C, Guo T, Sun L, Liu J, Lu Z. Inhibitor of Myom3 inhibits proliferation and promotes differentiation of sheep myoblasts. Genomics 2024; 116:110921. [PMID: 39173892 DOI: 10.1016/j.ygeno.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Skeletal muscle quality and yield are important production traits in livestock, and improving skeletal muscle quality while increasing its yield is an important goal of economic breeding. The proliferation and differentiation process of sheep myoblasts directly affects the growth and development of their muscles, thereby affecting the yield of mutton. Myomesin 3 (Myom3), as a functional gene related to muscle growth, currently lacks research on its function in myoblasts. This study aims to investigate the effect of the Myom3 gene on the proliferation and differentiation of sheep myoblasts and its potential molecular mechanisms. The results showed that inhibitor of Myom3 in the proliferation phase of myoblasts resulted in significant downregulation of the proliferation marker gene paired box 7 (Pax7) and myogenic regulatory factors (MRFs; Myf5, Myod1, Myog, P < 0.01), a significant decrease in the EdU-positive cell rate (P < 0.05), and a significant increase in the cell apoptosis rate (P < 0.01), which inhibited the proliferation of myoblasts and promoted their apoptosis. During the differentiation phase of myoblasts, the inhibitor of Myom3 resulted in significant downregulation of the Pax7 gene, upregulation of MRFs (Myod1, Myog, P < 0.05), and a significant increase in fusion index (P < 0.05), promoting the differentiation of myoblasts. Further transcriptome sequencing revealed that differentially expressed genes in the Myom3 interference group were mainly enriched in the MAPK signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. In summary, the inhibitor of Myom3 inhibits myoblast proliferation and promotes myoblast differentiation. Therefore, Myom3 has a potential regulatory effect on the growth and development of sheep muscles, and in-depth functional research can be used for molecular breeding practices in sheep.
Collapse
Affiliation(s)
- Lingying Kong
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Lixia Sun
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
2
|
Alvarez AM, Trufen CEM, Buri MV, de Sousa MBN, Arruda-Alves FI, Lichtenstein F, Castro de Oliveira U, Junqueira-de-Azevedo IDLM, Teixeira C, Moreira V. Tumor Necrosis Factor-Alpha Modulates Expression of Genes Involved in Cytokines and Chemokine Pathways in Proliferative Myoblast Cells. Cells 2024; 13:1161. [PMID: 38995013 PMCID: PMC11240656 DOI: 10.3390/cells13131161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Skeletal muscle regeneration after injury is a complex process involving inflammatory signaling and myoblast activation. Pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) are key mediators, but their effects on gene expression in proliferating myoblasts are unclear. We performed the RNA sequencing of TNF-α treated C2C12 myoblasts to elucidate the signaling pathways and gene networks regulated by TNF-α during myoblast proliferation. The TNF-α (10 ng/mL) treatment of C2C12 cells led to 958 differentially expressed genes compared to the controls. Pathway analysis revealed significant regulation of TNF-α signaling, along with the chemokine and IL-17 pathways. Key upregulated genes included cytokines (e.g., IL-6), chemokines (e.g., CCL7), and matrix metalloproteinases (MMPs). TNF-α increased myogenic factor 5 (Myf5) but decreased MyoD protein levels and stimulated the release of MMP-9, MMP-10, and MMP-13. TNF-α also upregulates versican and myostatin mRNA. Overall, our study demonstrates the TNF-α modulation of distinct gene expression patterns and signaling pathways that likely contribute to enhanced myoblast proliferation while suppressing premature differentiation after muscle injury. Elucidating the mechanisms involved in skeletal muscle regeneration can aid in the development of regeneration-enhancing therapeutics.
Collapse
Affiliation(s)
- Angela María Alvarez
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Reproduction Group, Pharmacy Department, School of Pharmaceutical and Food Sciences, University of Antioquia—UdeA, Medellín 050010, Colombia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, SP, Brazil;
| | - Carlos Eduardo Madureira Trufen
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.i, 252 50 Vestec, Czech Republic
| | - Marcus Vinicius Buri
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
| | - Marcela Bego Nering de Sousa
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, SP, Brazil;
| | - Francisco Ivanio Arruda-Alves
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
| | - Flavio Lichtenstein
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
| | - Ursula Castro de Oliveira
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Catarina Teixeira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Laboratório de Farmacologia, Butantan Institute, Sao Paulo 05503-900, SP, Brazil
| | - Vanessa Moreira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, SP, Brazil;
| |
Collapse
|
3
|
Verma M, Asakura Y, Wang X, Zhou K, Ünverdi M, Kann AP, Krauss RS, Asakura A. Endothelial cell signature in muscle stem cells validated by VEGFA-FLT1-AKT1 axis promoting survival of muscle stem cell. eLife 2024; 13:e73592. [PMID: 38842166 PMCID: PMC11216748 DOI: 10.7554/elife.73592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.
Collapse
Affiliation(s)
- Mayank Verma
- Department of Pediatrics & Neurology, Division of Pediatric Neurology, The University of Texas Southwestern Medical CenterDallasUnited States
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Xuerui Wang
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Kasey Zhou
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Mahmut Ünverdi
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Graduate School of Biomedical Sciencesf, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical SchoolMinneapolisUnited States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical SchoolMinneapolisUnited States
- Department of Neurology, University of Minnesota Medical SchoolMinneapolisUnited States
| |
Collapse
|
4
|
Cess CG, Finley SD. Data-driven analysis of a mechanistic model of CAR T cell signaling predicts effects of cell-to-cell heterogeneity. J Theor Biol 2019; 489:110125. [PMID: 31866395 PMCID: PMC7467855 DOI: 10.1016/j.jtbi.2019.110125] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023]
Abstract
Due to the variability of protein expression, cells of the same population can exhibit different responses to stimuli. It is important to understand this heterogeneity at the individual level, as population averages mask these underlying differences. Using computational modeling, we can interrogate a system much more precisely than by using experiments alone, in order to learn how the expression of each protein affects a biological system. Here, we examine a mechanistic model of CAR T cell signaling, which connects receptor-antigen binding to MAPK activation, to determine intracellular modulations that can increase cellular response. CAR T cell cancer therapy involves removing a patient's T cells, modifying them to express engineered receptors that can bind to tumor-associated antigens to promote tumor cell killing, and then injecting the cells back into the patient. This population of cells, like all cell populations, would have heterogeneous protein expression, which could affect the efficacy of treatment. Thus, it is important to examine the effects of cell-to-cell heterogeneity. We first generated a dataset of simulated cell responses via Monte Carlo simulations of the mechanistic model, where the initial protein concentrations were randomly sampled. We analyzed the dataset using partial least-squares modeling to determine the relationships between protein expression and ERK phosphorylation, the output of the mechanistic model. Using this data-driven analysis, we found that only the expressions of proteins relating directly to the receptor and the MAPK cascade, the beginning and end of the network, respectively, are relevant to the cells' response. We also found, surprisingly, that increasing the amount of receptor present can actually inhibit the cell's ability to respond due to increasing the strength of negative feedback from phosphatases. Overall, we have combined data-driven and mechanistic modeling to generate detailed insight into CAR T cell signaling.
Collapse
Affiliation(s)
- Colin G Cess
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States; Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|