1
|
Farris AL, Lambrechts D, Zhou Y, Zhang NY, Sarkar N, Moorer MC, Rindone AN, Nyberg EL, Perdomo-Pantoja A, Burris SJ, Free K, Witham TF, Riddle RC, Grayson WL. 3D-printed oxygen-releasing scaffolds improve bone regeneration in mice. Biomaterials 2022; 280:121318. [PMID: 34922272 PMCID: PMC8918039 DOI: 10.1016/j.biomaterials.2021.121318] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/06/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023]
Abstract
Low oxygen (O2) diffusion into large tissue engineered scaffolds hinders the therapeutic efficacy of transplanted cells. To overcome this, we previously studied hollow, hyperbarically-loaded microtanks (μtanks) to serve as O2 reservoirs. To adapt these for bone regeneration, we fabricated biodegradable μtanks from polyvinyl alcohol and poly (lactic-co-glycolic acid) and embedded them to form 3D-printed, porous poly-ε-caprolactone (PCL)-μtank scaffolds. PCL-μtank scaffolds were loaded with pure O2 at 300-500 psi. When placed at atmospheric pressures, the scaffolds released O2 over a period of up to 8 h. We confirmed the inhibitory effects of hypoxia on the osteogenic differentiation of human adipose-derived stem cells (hASCs and we validated that μtank-mediated transient hyperoxia had no toxic impacts on hASCs, possibly due to upregulation of endogenous antioxidant regulator genes. We assessed bone regeneration in vivo by implanting O2-loaded, hASC-seeded, PCL-μtank scaffolds into murine calvarial defects (4 mm diameters × 0.6 mm height) and subcutaneously (4 mm diameter × 8 mm height). In both cases we observed increased deposition of extracellular matrix in the O2 delivery group along with greater osteopontin coverages and higher mineral deposition. This study provides evidence that even short-term O2 delivery from PCL-μtank scaffolds may enhance hASC-mediated bone tissue regeneration.
Collapse
Affiliation(s)
- Ashley L. Farris
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dennis Lambrechts
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxiao Zhou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Y. Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Naboneeta Sarkar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Megan C. Moorer
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Alexandra N. Rindone
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan L. Nyberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - S. J. Burris
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kendall Free
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Timothy F. Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan C. Riddle
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Warren L. Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD,Corresponding author:
| |
Collapse
|
2
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|