1
|
Kim HI, Lee SH, Shin SJ, Park JH, Yu JE, Lee SW, Yang SH, Pires L, Wilson BC. Phonozen-mediated photodynamic therapy comparing two wavelengths in a mouse model of peritoneal carcinomatosis. Photochem Photobiol Sci 2023; 22:2563-2572. [PMID: 37632684 DOI: 10.1007/s43630-023-00470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND This study assessed the therapeutic efficacy of intraperitoneal photodynamic therapy (PDT) using photosensitizer activation at two different wavelengths, 405 and 664 nm, in a mouse model of peritoneal carcinomatosis. METHODS The dark and light cytotoxicity of chlorin e6-polyvinylpyrrolidone (Phonozen) were measured in vitro under 402 ± 14 and 670 ± 18 nm LED activation in bioluminescent human gastric cancer cells, MKN45-luc. Cell viability was measured at 6 h after irradiation using the PrestoBlue assay. Corresponding in vivo studies were performed in athymic nude mice by intraperitoneal injection of 1 × 106 MKN45-luc cells. PDT was performed 10 d after tumor induction and comprised intraperitoneal injection of Phonozen followed by light irradiation at 3 h, delivered by a diffusing-tip optical fiber placed in the peritoneal cavity and coupled to a 405 or 664 nm diode laser to deliver a total energy of 50 J (20 mice per cohort). Whole-body bioluminescence imaging was used to track the tumor burden after PDT out to 130 days, and 5 mice in each cohort were sacrificed at 4 h post treatment to measure the acute tumor necrosis. RESULTS Photosensitizer dose-dependent photocytotoxicity was higher in vitro at 405 than 664 nm. In vivo, PDT reduced the tumor growth rate at both wavelengths, with no statistically significant difference. There was substantial necrosis, and median survival was significantly prolonged at both wavelengths compared with controls (46 and 46 vs. 34 days). CONCLUSIONS Phonozen-mediated PDT results in significant cytotoxicity in vitro as well as tumor necrosis and prolonged survival in vivo following intraperitoneal light irradiation. Blue light was more photocytotoxic than red in vitro and had marginally higher efficacy in vivo.
Collapse
Affiliation(s)
- Hyoung-Il Kim
- Princess Margaret Cancer Research Tower, University Health Network, 15-314, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Division of Upper Gastrointestinal Surgery, Gastric Cancer Center, Yonsei Cancer Center, Seoul, South Korea
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Ho Lee
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Hyun Park
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
- Department of Nano-Science and Technology, Graduate School of Convergence Science and Technology of Seoul National University, Seoul, South Korea
| | - Jae Eun Yu
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Won Lee
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hee Yang
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Layla Pires
- Princess Margaret Cancer Research Tower, University Health Network, 15-314, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Research Tower, University Health Network, 15-314, 101 College Street, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Comparison of the Capabilities of Spectroscopic and Quantitative Video Analysis of Fluorescence for the Diagnosis and Photodynamic Therapy Control of Cholangiocellular Cancer. PHOTONICS 2022. [DOI: 10.3390/photonics9020065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholangiocellular cancer (CCC) is a malignant neoplasm of the hepatobiliary system that is difficult to diagnose and treat. Currently, the most effective treatment of CCC is demonstrated under the control by fluorescent diagnosis. Photodynamic therapy (PDT) has also shown good results in the treatment of this disease, and fluorescence analysis of the photosensitizer is a good approach to control PDT. This article presents the results of a comparison of spectroscopic and quantitative video-fluorescent analysis of chlorin e6 photosensitizer fluorescence in vivo during cholangiocellular cancer surgery. Spectroscopic analysis provides accurate information about the concentration of the photosensitizer in the tumor, while the video-fluorescence method is convenient for visualizing tumor margins. A direct correlation is shown between these two methods when comparing the fluorescence signals before and after PDT. The applied paired Student’s t-test shows a significant difference between fluorescence signal before and after PDT in both diagnostic methods. In this regard, video-fluorescence navigation is not inferior in accuracy, sensitivity, or efficiency to spectroscopic methods.
Collapse
|
3
|
Zhu D, Blondel W, Qu J, Wang X, Yang S. Preface to the special issue on "Biomedical Optics". FRONTIERS OF OPTOELECTRONICS 2020; 13:305-306. [PMID: 36641570 PMCID: PMC9743943 DOI: 10.1007/s12200-020-1132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 06/17/2023]
Affiliation(s)
- Dan Zhu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Walter Blondel
- Université de Lorraine, CNRS, CRAN UMR 7039, Nancy, 54000 France
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-0553 USA
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|