1
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Alarcon-Espejo P, Sarabia-Riquelme R, Matrone GM, Shahi M, Mahmoudi S, Rupasinghe GS, Le VN, Mantica AM, Qian D, Balk TJ, Rivnay J, Weisenberger M, Paterson AF. High-Hole-Mobility Fiber Organic Electrochemical Transistors for Next-Generation Adaptive Neuromorphic Bio-Hybrid Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305371. [PMID: 37824715 DOI: 10.1002/adma.202305371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Indexed: 10/14/2023]
Abstract
The latest developments in fiber design and materials science are paving the way for fibers to evolve from parts in passive components to functional parts in active fabrics. Designing conformable, organic electrochemical transistor (OECT) structures using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) fibers has excellent potential for low-cost wearable bioelectronics, bio-hybrid devices, and adaptive neuromorphic technologies. However, to achieve high-performance, stable devices from PEDOT:PSS fibers, approaches are required to form electrodes on fibers with small diameters and poor wettability, that leads to irregular coatings. Additionally, PEDOT:PSS-fiber fabrication needs to move away from small batch processing to roll-to-roll or continuous processing. Here, it is shown that synergistic effects from a superior electrode/organic interface, and exceptional fiber alignment from continuous processing, enable PEDOT:PSS fiber-OECTs with stable contacts, high µC* product (1570.5 F cm-1 V-1 s-1 ), and high hole mobility over 45 cm2 V-1 s-1 . Fiber-electrochemical neuromorphic organic devices (fiber-ENODes) are developed to demonstrate that the high mobility fibers are promising building blocks for future bio-hybrid technologies. The fiber-ENODes demonstrate synaptic weight update in response to dopamine, as well as a form factor closely matching the neuronal axon terminal.
Collapse
Affiliation(s)
- Paula Alarcon-Espejo
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Ruben Sarabia-Riquelme
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Maryam Shahi
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Siamak Mahmoudi
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Gehan S Rupasinghe
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Vianna N Le
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Antonio M Mantica
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Dali Qian
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - T John Balk
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew Weisenberger
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| | - Alexandra F Paterson
- Department of Chemical and Materials Engineering, Centre for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
3
|
Nguyen KV, Lee D, Kim Y, Lee WH. Fiber-Type Transistor-Based Chemical and Physical Sensors Using Conjugated Polymers. Polymers (Basel) 2023; 15:4062. [PMID: 37896306 PMCID: PMC10609800 DOI: 10.3390/polym15204062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Fiber-type electronics is a crucial field for realizing wearable electronic devices with a wide range of sensing applications. In this paper, we begin by discussing the fabrication of fibers from conjugated polymers. We then explore the utilization of these fibers in the development of field-effect and electrochemical transistors. Finally, we investigate the diverse applications of these fiber-type transistors, encompassing chemical and physical sensors. Our paper aims to offer a comprehensive understanding of the use of conjugated polymers in fiber-type transistor-based sensors.
Collapse
Affiliation(s)
| | | | | | - Wi Hyoung Lee
- Department of Organic and Nano System Engineering, School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Wei L, Tao G, Hou C, Yan W. Preface to the special issue on "Recent Advances in Functional Fibers". FRONTIERS OF OPTOELECTRONICS 2022; 15:53. [PMID: 36637571 PMCID: PMC9797627 DOI: 10.1007/s12200-022-00054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Chong Hou
- Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074 China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Wei Yan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| |
Collapse
|