1
|
Echeverria-Villalobos M, Fabian CA, Mitchell JG, Mazzota E, Fiorda Diaz JC, Noon K, Weaver TE. Cannabinoids and General Anesthetics: Revisiting Molecular Mechanisms of Their Pharmacological Interactions. Anesth Analg 2024:00000539-990000000-01027. [PMID: 39504269 DOI: 10.1213/ane.0000000000007313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cannabis has been used for recreation and medical purposes for more than a millennium across the world; however, its use's consequences remain poorly understood. Although a growing number of surgical patients are regular cannabis consumers, little is known regarding the pharmacological interactions between cannabis and general anesthetics; consequently, there is not a solid consensus among anesthesiologists on the perioperative management of these patients. The existing evidence about the molecular mechanisms underlying pharmacological interactions between cannabinoids and anesthetic agents, both in animal models and in humans, shows divergent results. While some animal studies have demonstrated that phytocannabinoids (tetrahydrocannabinol [THC], cannabidiol [CBD], and cannabinol [CBN]) potentiate the anesthetic effects of inhalation and intravenous anesthetics, while others have found effects comparable with what has been described in humans so far. Clinical studies and case reports have consistently shown increased requirements of GABAergic anesthetic drugs (isoflurane, sevoflurane, propofol, midazolam) to achieve adequate levels of clinical anesthesia. Several potential molecular mechanisms have been proposed to explain the effects of these interactions. However, it is interesting to mention that in humans, it has been observed that the ingestion of THC enhances the hypnotic effect of ketamine. Animal studies have reported that cannabinoids enhance the analgesic effect of opioids due to a synergistic interaction of the endogenous cannabinoid system (ECS) with the endogenous opioid system (EOS) at the spinal cord level and in the central nervous system. However, human data reveals that cannabis users show higher scores of postoperative pain intensity as well as increased requirements of opioid medication for analgesia. This review aims to improve understanding of the molecular mechanisms and pharmacological interactions between cannabis and anesthetic drugs and the clinical outcomes that occur when these substances are used together.
Collapse
Affiliation(s)
| | - Catherine A Fabian
- Department of Anesthesiology. University of Michigan Hospital, Ann Arbor, Michigan
| | - Justin G Mitchell
- Department of Anesthesiology & Perioperative Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Elvio Mazzota
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Juan C Fiorda Diaz
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kristen Noon
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tristan E Weaver
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
2
|
Gom RC, Wickramarachchi P, George AG, Lightfoot SHM, Newton-Gunderson D, Hill MN, Teskey GC, Colangeli R. Phytocannabinoids restore seizure-induced alterations in emotional behaviour in male rats. Neuropsychopharmacology 2024:10.1038/s41386-024-02005-y. [PMID: 39433952 DOI: 10.1038/s41386-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Epilepsy often presents with severe emotional comorbidities including anxiety and abnormal fear responses which impose a significant burden on, and reduce, quality of life in people living with the disease. Our lab has recently shown that kindled seizures lead to changes in emotional processing resulting from the downregulation of anandamide signalling within the amygdala. Phytocannabinoids derived from the Cannabis sativa plant have attracted a lot of interest as a new class of drugs with potential anticonvulsant effects. Among the wide number of compounds occurring in Cannabis sativa, Δ9- tetrahydrocannabinol (THC), the one responsible for its main psychoactive effects, and the nonpsychoactive cannabidiol (CBD) have been extensively examined under pre-clinical and clinical contexts to control seizures, however, neither have been assessed in the context of the management of emotional comorbidities associated with seizure activity. We used two behavioural procedures to assess anxiety- and fear-like responding in adult male Long-Evans rats: elevated plus maze and auditory fear conditioning. In agreement with previous reports, we found seizure-induced increases in anxiety- and fear-like responding. These effects were reversed by either CBD (vaporized) or THC (oral). We also found that antagonism of serotonin 1 A receptors prior to CBD exposure prevented its protective effects. Phytocannabinoids offer a novel and reliable opportunity to treat seizure induced comorbid emotional alterations.
Collapse
Affiliation(s)
- Renaud C Gom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada.
| | - Pasindu Wickramarachchi
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Antis G George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Savannah H M Lightfoot
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Dana Newton-Gunderson
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
| | - Roberto Colangeli
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Calgary, AB, Canada
- Department of Experimental and Clinical Medicine; Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
3
|
Faiz MB, Naeem F, Irfan M, Aslam MA, Estevinho LM, Ateşşahin DA, Alshahrani AM, Calina D, Khan K, Sharifi-Rad J. Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges. Discov Oncol 2024; 15:490. [PMID: 39331301 PMCID: PMC11436528 DOI: 10.1007/s12672-024-01356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
For centuries, cannabinoids have been utilized for their medicinal properties, particularly in Asian and South-Asian countries. Cannabis plants, known for their psychoactive and non-psychoactive potential, were historically used for spiritual and remedial healing. However, as cannabis became predominantly a recreational drug, it faced prohibition. Recently, the therapeutic potential of cannabinoids has sparked renewed research interest, extending their use to various medical conditions, including cancer. This review aims to highlight current data on the involvement of cannabinoids in cancer signaling pathways, emphasizing their potential in cancer therapy and the need for further investigation into the underlying mechanisms. A comprehensive literature review was conducted using databases such as PubMed/MedLine, Google Scholar, Web of Science, Scopus, and Embase. The search focused on peer-reviewed articles, review articles, and clinical trials discussing the anticancer properties of cannabinoids. Inclusion criteria included studies in English on the mechanisms of action and clinical efficacy of cannabinoids in cancer. Cannabinoids, including Δ9-THC, CBD, and CBG, exhibit significant anticancer activities such as apoptosis induction, autophagy stimulation, cell cycle arrest, anti-proliferation, anti-angiogenesis, and metastasis inhibition. Clinical trials have demonstrated cannabinoids' efficacy in tumor regression and health improvement in palliative care. However, challenges such as variability in cannabinoid composition, psychoactive effects, regulatory barriers, and lack of standardized dosing remain. Cannabinoids show promising potential as anticancer agents through various mechanisms. Further large-scale, randomized controlled trials are essential to validate these findings and establish standardized therapeutic protocols. Future research should focus on elucidating detailed mechanisms, optimizing dosing, and exploring cannabinoids as primary chemotherapeutic agents.
Collapse
Affiliation(s)
- Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Faiza Naeem
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Adeel Aslam
- Department of Forensic Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Leticia M Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, Shaqra University, Dawadimi, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Javad Sharifi-Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Kouchaeknejad A, Van Der Walt G, De Donato MH, Puighermanal E. Imaging and Genetic Tools for the Investigation of the Endocannabinoid System in the CNS. Int J Mol Sci 2023; 24:15829. [PMID: 37958825 PMCID: PMC10648052 DOI: 10.3390/ijms242115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS development and regulation. Given its multifaceted involvement in neurobiology and its significance in various CNS disorders, the ECS as a whole is considered a promising therapeutic target. Despite significant advances in our understanding of the ECS's role in the CNS, its complex architecture and extensive crosstalk with other biological systems present challenges for research and clinical advancements. To bridge these knowledge gaps and unlock the full therapeutic potential of ECS interventions in CNS-related disorders, a plethora of molecular-genetic tools have been developed in recent years. Here, we review some of the most impactful tools for investigating the neurological aspects of the ECS. We first provide a brief introduction to the ECS components, including cannabinoid receptors, endocannabinoids, and metabolic enzymes, emphasizing their complexity. This is followed by an exploration of cutting-edge imaging tools and genetic models aimed at elucidating the roles of these principal ECS components. Special emphasis is placed on their relevance in the context of CNS and its associated disorders.
Collapse
Affiliation(s)
| | | | | | - Emma Puighermanal
- Neuroscience Institute, Autonomous University of Barcelona, 08193 Bellaterra, Spain; (A.K.); (G.V.D.W.); (M.H.D.D.)
| |
Collapse
|
5
|
Woźniczka K, Konieczyński P, Plenis A, Bączek T, Roszkowska A. SPME as a green sample-preparation technique for the monitoring of phytocannabinoids and endocannabinoids in complex matrices. J Pharm Anal 2023; 13:1117-1134. [PMID: 38024858 PMCID: PMC10657972 DOI: 10.1016/j.jpha.2023.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 12/01/2023] Open
Abstract
The endocannabinoid system (ECS), particularly its signaling pathways and ligands, has garnered considerable interest in recent years. Along with clinical work investigating the ECS' functions, including its role in the development of neurological and inflammatory conditions, much research has focused on developing analytical protocols enabling the precise monitoring of the levels and metabolism of the most potent ECS ligands: exogenous phytocannabinoids (PCs) and endogenous cannabinoids (endocannabinoids, ECs). Solid-phase microextraction (SPME) is an advanced, non-exhaustive sample-preparation technique that facilitates the precise and efficient isolation of trace amounts of analytes, thus making it appealing for the analysis of PCs and ECs in complex matrices of plant and animal/human origin. In this paper, we review recent forensic medicine and toxicological studies wherein SPME has been applied to monitor levels of PCs and ECs in complex matrices, determine their effects on organism physiology, and assess their role in the development of several diseases.
Collapse
Affiliation(s)
- Katarzyna Woźniczka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Konieczyński
- Department of Analytical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
6
|
Quillet JC, Siani-Rose M, McKee R, Goldstein B, Taylor M, Kurek I. A machine learning approach for understanding the metabolomics response of children with autism spectrum disorder to medical cannabis treatment. Sci Rep 2023; 13:13022. [PMID: 37608004 PMCID: PMC10444802 DOI: 10.1038/s41598-023-40073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition impacting behavior, communication, social interaction and learning abilities. Medical cannabis (MC) treatment can reduce clinical symptoms in individuals with ASD. Cannabis-responsive biomarkers are metabolites found in saliva that change in response to MC treatment. Previously we showed levels of these biomarkers in children with ASD successfully treated with MC shift towards the physiological levels detected in typically developing (TD) children, and potentially can quantify the impact. Here, we tested for the first time the capabilities of machine learning techniques applied to our dynamic, high-resolution and rich feature dataset of cannabis-responsive biomarkers from a limited number of children with ASD before and after MC treatment and a TD group to identify: (1) biomarkers distinguishing ASD and TD groups; (2) non-cannabinoid plant molecules with synergistic effects; and (3) biomarkers associated with specific cannabinoids. We found: (1) lysophosphatidylethanolamine can distinguish between ASD and TD groups; (2) novel phytochemicals contribute to the therapeutic effects of MC treatment by inhibition of acetylcholinesterase; and (3) THC- and CBD-associated cannabis-responsive biomarkers are two distinct groups, while CBG is associated with some biomarkers from both groups.
Collapse
Affiliation(s)
| | - Michael Siani-Rose
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Robert McKee
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Bonni Goldstein
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Myiesha Taylor
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA
| | - Itzhak Kurek
- Cannformatics, Inc., 3859 Cesar Chavez St, San Francisco, CA, 94131, USA.
| |
Collapse
|
7
|
Phytocannabinoids in the Pharmacotherapy of Psoriasis. Molecules 2023; 28:molecules28031192. [PMID: 36770858 PMCID: PMC9920113 DOI: 10.3390/molecules28031192] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Phytocannabinoids are naturally occurring compounds, the main source of which is Cannabis sativa L. Through direct action or interaction with G protein-coupled receptors, they affect ROS and pro-inflammatory cytokines levels and modify the effectiveness of transcription factor responsible for the biosynthesis of antioxidants which lead to oxidative stress and its consequences. Due to the modification of the redox balance and inflammation, phytocannabinoids are used in the treatment of various diseases, including autoimmune dermatoses, such as atopic dermatitis and psoriasis. Psoriasis is one of the most common dermatoses, and one of unknown etiology. A disturbed redox balance with a shift towards the oxidation leads to oxidative stress, resulting in oxidative modifications, mainly of lipids and proteins, and prolonged activation of immune cells and increased generation of pro-inflammatory cytokines, resulting in chronic inflammation. Given the biological activity of phytocannabinoids, they have become the focus of research as components of pharmacotherapy for psoriasis. Beneficial effects were shown by various representatives of phytocannabinoids, but the effect of cannabidiol (CBD) on skin cells (in vitro and ex vivo) and on blood cells from patients with psoriasis vulgaris and psoriatic arthritis has been most often evaluated in recent years.
Collapse
|
8
|
Afshar S, Abbasinazari M, Amin G, Farrokhian A, Sistanizad M, Afshar F, Khalili S. Endocannabinoids and related compounds as modulators of angiogenesis: Concepts and clinical significance. Cell Biochem Funct 2022; 40:826-837. [PMID: 36317321 DOI: 10.1002/cbf.3754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
Vasculogenesis (the process of differentiation of angioblasts toward endothelial cells and de novo formation of crude vascular networks) and angiogenesis (the process of harmonized sprouting and dispersal of new capillaries from previously existing ones) are two fundamentally complementary processes, obligatory for maintaining physiological functioning of vascular system. In clinical practice, however, the later one is of more importance as it guarantees correct embryonic nourishment, accelerates wound healing processes, prevents uncontrolled cell growth and tumorigenesis, contributes in supplying nutritional demand following occlusion of coronary vessels and is in direct relation with development of diabetic retinopathy. Hence, discovery of novel molecules capable of modulating angiogenic events are of great clinical importance. Recent studies have demonstrated multiple angio-regulatory activities for endocannabinoid system modulators and endocannabinoid-like molecules, as well as their metabolizing enzymes. Hence, in present article, we reviewed the regulatory roles of these molecules on angiogenesis and described molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Shima Afshar
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasinazari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Amin
- Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Farrokhian
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Afshar
- Department of internal medicine, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shayesteh Khalili
- Department of Internal Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Anti-Cancer Activity of Cannabis sativa Phytocannabinoids: Molecular Mechanisms and Potential in the Fight against Ovarian Cancer and Stem Cells. Cancers (Basel) 2022; 14:cancers14174299. [PMID: 36077833 PMCID: PMC9454933 DOI: 10.3390/cancers14174299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy, with about 70% of cases diagnosed only at an advanced stage. Cannabis sativa, which produces more than 150 phytocannabinoids, is used worldwide to alleviate numerous symptoms associated with various medical conditions. Recently, studies across a range of cancer types have demonstrated that the phytocannabinoids Δ9-trans-tetrahydrocannabinol (THC) and cannabidiol (CBD) have anti-cancer activity in vitro and in vivo, but also the potential to increase other drugs’ adverse effects. THC and CBD act via several different biological and signaling pathways, including receptor-dependent and receptor-independent pathways. However, very few studies have examined the effectiveness of cannabis compounds against OC. Moreover, little is known about the effectiveness of cannabis compounds against cancer stem cells (CSCs) in general and OC stem cells (OCSCs) in particular. CSCs have been implicated in tumor initiation, progression, and invasion, as well as tumor recurrence, metastasis, and drug resistance. Several hallmarks and concepts describe CSCs. OCSCs, too, are characterized by several markers and specific drug-resistance mechanisms. While there is no peer-reviewed information regarding the effect of cannabis and cannabis compounds on OCSC viability or development, cannabis compounds have been shown to affect genetic pathways and biological processes related to CSCs and OCSCs. Based on evidence from other cancer-type studies, the use of phytocannabinoid-based treatments to disrupt CSC homeostasis is suggested as a potential intervention to prevent chemotherapy resistance. The potential benefits of the combination of chemotherapy with phytocannabinoid treatment should be examined in ovarian cancer patients.
Collapse
|
10
|
Procaccia S, Lewitus GM, Lipson Feder C, Shapira A, Berman P, Meiri D. Cannabis for Medical Use: Versatile Plant Rather Than a Single Drug. Front Pharmacol 2022; 13:894960. [PMID: 35548332 PMCID: PMC9081504 DOI: 10.3389/fphar.2022.894960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Medical Cannabis and its major cannabinoids (−)-trans-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are gaining momentum for various medical purposes as their therapeutic qualities are becoming better established. However, studies regarding their efficacy are oftentimes inconclusive. This is chiefly because Cannabis is a versatile plant rather than a single drug and its effects do not depend only on the amount of THC and CBD. Hundreds of Cannabis cultivars and hybrids exist worldwide, each with a unique and distinct chemical profile. Most studies focus on THC and CBD, but these are just two of over 140 phytocannabinoids found in the plant in addition to a milieu of terpenoids, flavonoids and other compounds with potential therapeutic activities. Different plants contain a very different array of these metabolites in varying relative ratios, and it is the interplay between these molecules from the plant and the endocannabinoid system in the body that determines the ultimate therapeutic response and associated adverse effects. Here, we discuss how phytocannabinoid profiles differ between plants depending on the chemovar types, review the major factors that affect secondary metabolite accumulation in the plant including the genotype, growth conditions, processing, storage and the delivery route; and highlight how these factors make Cannabis treatment highly complex.
Collapse
|
11
|
Cannabis Biomolecule Effects on Cancer Cells and Cancer Stem Cells: Cytotoxic, Anti-Proliferative, and Anti-Migratory Activities. Biomolecules 2022; 12:biom12040491. [PMID: 35454080 PMCID: PMC9028333 DOI: 10.3390/biom12040491] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex family of diseases affecting millions of people worldwide. Gliomas are primary brain tumors that account for ~80% of all malignant brain tumors. Glioblastoma multiforme (GBM) is the most common, invasive, and lethal subtype of glioma. Therapy resistance and intra-GBM tumoral heterogeneity are promoted by subpopulations of glioma stem cells (GSCs). Cannabis sativa produces hundreds of secondary metabolites, such as flavonoids, terpenes, and phytocannabinoids. Around 160 phytocannabinoids have been identified in C. sativa. Cannabis is commonly used to treat various medical conditions, and it is used in the palliative care of cancer patients. The anti-cancer properties of cannabis compounds include cytotoxic, anti-proliferative, and anti-migratory activities on cancer cells and cancer stem cells. The endocannabinoids system is widely distributed in the body, and its dysregulation is associated with different diseases, including various types of cancer. Anti-cancer activities of phytocannabinoids are mediated in glioma cells, at least partially, by the endocannabinoid receptors, triggering various cellular signaling pathways, including the endoplasmic reticulum (ER) stress pathway. Specific combinations of multiple phytocannabinoids act synergistically against cancer cells and may trigger different anti-cancer signaling pathways. Yet, due to scarcity of clinical trials, there remains no solid basis for the anti-cancer therapeutic potential of cannabis compounds.
Collapse
|
12
|
Hemp Chemotype Definition by Cannabinoids Characterization Using LC-ESI(+)-LTQ-FTICR MS and Infrared Multiphoton Dissociation. SEPARATIONS 2021. [DOI: 10.3390/separations8120245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development and application of advanced analytical methods for a comprehensive analysis of Cannabis sativa L. extracts plays a pivotal role in order to have a reliable evaluation of their chemotype definition to guarantee the efficacy and safety in pharmaceutical use. This paper deals with the qualitative and quantitative determination of cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), and cannabigerol (CBG) based on a liquid chromategraphy-mass spectrometry (LC-MS) method using electrospray ionization in positive mode (ESI+), coupled with a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). For the first time, structural information of phytocannabinoids is available upon precursor ions’ isolation within the FTICR trapping cell and subsequent fragmentation induced by infrared multiphoton dissociation (IRMPD). Such fragmentation and accurate mass measurement of product ions, alongside collision-induced dissociation (CID) within LTQ, was advantageous to propose a reliable fragmentation pattern for each compound. Then, the proposed LC-ESI(+)-LTQ-FTICR MS method was successfully applied to the hemp chemotype definition of three registered Italian accessions of hemp C. sativa plants (Carmagnola C.S., Carmagnola, and Eletta Campana), thus resulting in the Eletta Campana accession being the best one for cannabis product manufacturing.
Collapse
|
13
|
Parolaro D. Therapeutic and toxicological aspects of the use of cannabis and cannabinoids in medicine. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-020-00968-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe legalization of cannabis products for recreational and/or medical use means that our society is now clearly more open to its diffusion. Thus, it is particularly important for people to understand what is known about both the adverse health effects and the potential therapeutic benefits linked to cannabis. The evaluation of the benefit vs adverse effect of cannabis use is generally referred to its recreational use; however, medicinal cannabis is now authorized in several countries, and therefore, it has become a public safety issue. In this article, the acute and long-lasting consequences of recreational cannabis use as well as the therapeutic vs toxicological effect of medicinal cannabis will be summarized.Graphic abstract
Collapse
|
14
|
Piscitelli F, Di Marzo V. Cannabinoids: a class of unique natural products with unique pharmacology. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-020-00966-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Taylor AH, Tortolani D, Ayakannu T, Konje JC, Maccarrone M. (Endo)Cannabinoids and Gynaecological Cancers. Cancers (Basel) 2020; 13:E37. [PMID: 33375539 PMCID: PMC7795647 DOI: 10.3390/cancers13010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Gynaecological cancers can be primary neoplasms, originating either from the reproductive tract or the products of conception, or secondary neoplasms, representative of metastatic disease. For some of these cancers, the exact causes are unknown; however, it is recognised that the precise aetiopathogeneses for most are multifactorial and include exogenous (such as diet) and endogenous factors (such as genetic predisposition), which mutually interact in a complex manner. One factor that has been recognised to be involved in the pathogenesis and progression of gynaecological cancers is the endocannabinoid system (ECS). The ECS consists of endocannabinoids (bioactive lipids), their receptors, and metabolic enzymes responsible for their synthesis and degradation. In this review, the impact of plant-derived (Cannabis species) cannabinoids and endocannabinoids on gynaecological cancers will be discussed within the context of the complexity of the proteins that bind, transport, and metabolise these compounds in reproductive and other tissues. In particular, the potential of endocannabinoids, their receptors, and metabolic enzymes as biomarkers of specific cancers, such as those of the endometrium, will be addressed. Additionally, the therapeutic potential of targeting selected elements of the ECS as new action points for the development of innovative drugs will be presented.
Collapse
Affiliation(s)
- Anthony H. Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (T.A.)
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Daniel Tortolani
- European Centre for Brain Research, IRCCS Santa Lucia Foundation, 00164 Rome, Italy;
| | - Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (T.A.)
- Gynaecology Oncology Cancer Centre, Liverpool Women’s NHS Foundation Trust, Liverpool Women’s Hospital, Liverpool L8 7SS, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GB, UK
| | - Justin C. Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (T.A.)
| | - Mauro Maccarrone
- European Centre for Brain Research, IRCCS Santa Lucia Foundation, 00164 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|