1
|
Svartström O, Alneberg J, Terrapon N, Lombard V, de Bruijn I, Malmsten J, Dalin AM, El Muller E, Shah P, Wilmes P, Henrissat B, Aspeborg H, Andersson AF. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME JOURNAL 2017; 11:2538-2551. [PMID: 28731473 DOI: 10.1038/ismej.2017.108] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to 11 prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. Unlike in other ruminants, Spirochaetes constituted a significant proportion of the community and our analyses indicate that the corresponding strains are primarily pectin digesters. Pectin-degrading genes were also common in MAGs of Ruminococcus, Fibrobacteres and Bacteroidetes and were overall overrepresented in the moose microbiome compared with other ruminants. Phylogenomic analyses revealed several clades within the Bacteriodetes without previously characterized genomes. Several of these MAGs encoded a large numbers of dockerins, a module usually associated with cellulosomes. The Bacteroidetes dockerins were often linked to CAZymes and sometimes encoded inside polysaccharide utilization loci, which has never been reported before. The almost 100 CAZyme-annotated genomes reconstructed in this study provide an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries.
Collapse
Affiliation(s)
- Olov Svartström
- School of Biotechnology, Division of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johannes Alneberg
- School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Nicolas Terrapon
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Vincent Lombard
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Ino de Bruijn
- School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Jonas Malmsten
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden.,Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ann-Marie Dalin
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Emilie El Muller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pranjul Shah
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, 13288 Marseille, France.,INRA, USC 1408 AFMB, 13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Henrik Aspeborg
- School of Biotechnology, Division of Industrial Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anders F Andersson
- School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
2
|
Liu J, Wang JK, Zhu W, Pu YY, Guan LL, Liu JX. Monitoring the rumen pectinolytic bacteria Treponema saccharophilum using real-time PCR. FEMS Microbiol Ecol 2013; 87:576-85. [PMID: 24289046 DOI: 10.1111/1574-6941.12246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 12/01/2022] Open
Abstract
Treponema saccharophilum is a pectinolytic bacterium isolated from the bovine rumen. The abundance of this bacterium has not been well determined, reflecting the lack of a reliable and accurate detection method. To develop a rapid method for monitoring T. saccharophilum, we performed pyrosequencing of genomic DNA isolated from rumen microbiota to explore the 16S rRNA gene sequences of T. saccharophilum candidates. Species-specific primers were designed based on fifteen sequences of partial 16S rRNA genes generated through pyrosequencing with 97% or higher similarity with T. saccharophilum DSM2985 along with sequence from type strain. The relative abundance of T. saccharophilum was quantified in both in vitro and in vivo rumen systems with varied pectin-containing forages using real-time PCR. There was a clear association of T. saccharophilum with alfalfa hay, which contains more pectin than Chinese wild rye hay or corn stover. The relative abundance of T. saccharophilum was as high as 0.58% in vivo, comparable with the population density of other common rumen bacteria. It is recognized that T. saccharophilum plays an important role in pectin digestion in the rumen.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|