1
|
Zhao X, Guo M, Li X, Liu B, Li B, Wang J. Immobilization of Bio-imprinted Phospholipase D and Its Catalytic Behavior for Transphosphatidylation in the Biphasic System. Appl Biochem Biotechnol 2023; 195:7808-7820. [PMID: 37093529 DOI: 10.1007/s12010-023-04528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Phospholipase D (PLD) with the higher transphosphatidylation activity was screened from Streptomyces sp. LD0501 basing on the protoplast mutagenesis technology. Then, it was successfully bio-imprinted to form a hyperactivated structure and rigidified by the intramolecular cross-linking, which was immobilized on the nonporous nanoscale silica. Characterization techniques were employed to investigate the structure and physicochemical properties of the catalysts, including Fourier transform infrared (FTIR) spectra and scanning electron microscopy (SEM) analysis. Transphosphatidylation activity and selectivity were improved significantly when immobilized PLD was used. The maximum yield for the production of phosphatidylserine (PS) reached 97% and the side reaction, the hydrolysis, was minimized. These results were further confirmed by the nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. The imprint-induced characteristics of PLD was successfully "remembered" even in the present of much water. In addition, this immobilized hyperactivated PLD showed the excellent operational stabilities and environmental tolerances.
Collapse
Affiliation(s)
- Xia Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 Dongyihuan Road, Hanzhong, Shaanxi, 723001, China
| | - Meijing Guo
- College of Food Science and Engineering, Northwest University, Xi'an, China
| | - Xian Li
- College of Food Science and Engineering, Northwest University, Xi'an, China
| | - Bo Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 Dongyihuan Road, Hanzhong, Shaanxi, 723001, China
| | - Binglin Li
- College of Food Science and Engineering, Northwest University, Xi'an, China.
| | - Jiao Wang
- College of Food Science and Engineering, Northwest University, Xi'an, China.
- Biochemistry Center (BZH), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Rang J, Xia Z, Shuai L, Cao L, Liu Y, Li X, Xie J, Li Y, Hu S, Xie Q, Xia L. A TetR family transcriptional regulator, SP_2854 can affect the butenyl-spinosyn biosynthesis by regulating glucose metabolism in Saccharopolyspora pogona. Microb Cell Fact 2022; 21:83. [PMID: 35568948 PMCID: PMC9107242 DOI: 10.1186/s12934-022-01808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and a broad pesticidal spectrum. Currently, important functional genes involve in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently understanding its regulatory mechanism, and improving its production by metabolic engineering. Results Here, we identified a TetR family transcriptional regulator, SP_2854, that can positively regulate butenyl-spinosyn biosynthesis and affect strain growth, glucose consumption, and mycelial morphology in S. pogona. Using targeted metabolomic analyses, we found that SP_2854 overexpression enhanced glucose metabolism, while SP_2854 deletion had the opposite effect. To decipher the overproduction mechanism in detail, comparative proteomic analysis was carried out in the SP-2854 overexpressing mutant and the original strain, and we found that SP_2854 overexpression promoted the expression of proteins involved in glucose metabolism. Conclusion Our findings suggest that SP_2854 can affect strain growth and development and butenyl-spinosyn biosynthesis in S. pogona by controlling glucose metabolism. The strategy reported here will be valuable in paving the way for genetic engineering of regulatory elements in actinomycetes to improve important natural products production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01808-2.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaomin Li
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiao Xie
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunlong Li
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
3
|
Ding L, Huang H, Lu F, Lu J, Zhou X, Zhang Y, Cai M. Transposon insertion mutation of Antarctic psychrotrophic fungus for red pigment production adaptive to normal temperature. J Ind Microbiol Biotechnol 2022; 49:kuab073. [PMID: 34661657 PMCID: PMC9113092 DOI: 10.1093/jimb/kuab073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Polar regions are rich in microbial and product resources. Geomyces sp. WNF-15A is an Antarctic psy chrotrophic filamentous fungus producing high quality red pigment with potential for industrial use. However, efficient biosynthesis of red pigment can only realize at low temperature, which brings difficult control and high cost for the large-scale fermentation. This study aims to develop transposon insertion mutation method to improve cell growth and red pigment production adaptive to normal temperature. Genetic manipulation system of this fungus was firstly developed by antibiotic marker screening, protoplast preparation and transformation optimization, by which transformation efficiency of ∼50% was finally achieved. Then transposable insertion systems were established using Helitron, Fot1, and Impala transposons. The transposition efficiency reached 11.9%, 9.4%, and 4.6%, respectively. Mutant MP1 achieved the highest red pigment production (OD520 of 39) at 14°C, which was 40% higher than the wild-type strain. Mutant MP14 reached a maximum red pigment production (OD520 of 14.8) at 20°C, which was about twofold of the wild-type strain. Mutants MP2 and MP10 broke the repression mechanism of red pigment biosynthesis in the wild-type and allowed production at 25°C. For cell growth, eight mutants grew remarkably better (12%∼30% biomass higher) than the wild-type at 25°C. This study established an efficient genetic manipulation and transposon insertion mutation platform for polar filamentous fungus. It provides reference for genetic breeding of psychrotrophic fungi from polar and other regions.
Collapse
Affiliation(s)
- Lulu Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hezhou Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengning Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangshan Zhou
- China Resources Angde Biotech Pharma Co., Ltd., 78 E-jiao Street, Liaocheng, Shandong 252299, China
- China Resources Biopharmaceutical Co., Ltd., 1301-84 Sightseeing Road, Shenzhen 518110, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Tang J, Zhu Z, He H, Liu Z, Xia Z, Chen J, Hu J, Cao L, Rang J, Shuai L, Liu Y, Sun Y, Ding X, Hu S, Xia L. Bacterioferritin: a key iron storage modulator that affects strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Microb Cell Fact 2021; 20:157. [PMID: 34391414 PMCID: PMC8364703 DOI: 10.1186/s12934-021-01651-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Butenyl-spinosyn, produced by Saccharopolyspora pogona, is a promising biopesticide due to excellent insecticidal activity and broad pesticidal spectrum. Bacterioferritin (Bfr, encoded by bfr) regulates the storage and utilization of iron, which is essential for the growth and metabolism of microorganisms. However, the effect of Bfr on the growth and butenyl-spinosyn biosynthesis in S. pogona has not been explored. Results Here, we found that the storage of intracellular iron influenced butenyl-spinosyn biosynthesis and the stress resistance of S. pogona, which was regulated by Bfr. The overexpression of bfr increased the production of butenyl-spinosyn by 3.14-fold and enhanced the tolerance of S. pogona to iron toxicity and oxidative damage, while the knockout of bfr had the opposite effects. Based on the quantitative proteomics analysis and experimental verification, the inner mechanism of these phenomena was explored. Overexpression of bfr enhanced the iron storage capacity of the strain, which activated polyketide synthase genes and enhanced the supply of acyl-CoA precursors to improve butenyl-spinosyn biosynthesis. In addition, it induced the oxidative stress response to improve the stress resistance of S. pogona. Conclusion Our work reveals the role of Bfr in increasing the yield of butenyl-spinosyn and enhancing the stress resistance of S. pogona, and provides insights into its enhancement on secondary metabolism, which provides a reference for optimizing the production of secondary metabolites in actinomycetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01651-x.
Collapse
Affiliation(s)
- Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Liang M, Li W, Qi L, Chen G, Cai L, Yin WB. Establishment of a Genetic Transformation System in Guanophilic Fungus Amphichorda guana. J Fungi (Basel) 2021; 7:jof7020138. [PMID: 33672933 PMCID: PMC7918455 DOI: 10.3390/jof7020138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Fungi from unique environments exhibit special physiological characters and plenty of bioactive natural products. However, the recalcitrant genetics or poor transformation efficiencies prevent scientists from systematically studying molecular biological mechanisms and exploiting their metabolites. In this study, we targeted a guanophilic fungus Amphichorda guana LC5815 and developed a genetic transformation system. We firstly established an efficient protoplast preparing method by conditional optimization of sporulation and protoplast regeneration. The regeneration rate of the protoplast is up to about 34.6% with 0.8 M sucrose as the osmotic pressure stabilizer. To develop the genetic transformation, we used the polyethylene glycol-mediated protoplast transformation, and the testing gene AG04914 encoding a major facilitator superfamily transporter was deleted in strain LC5815, which proves the feasibility of this genetic manipulation system. Furthermore, a uridine/uracil auxotrophic strain was created by using a positive screening protocol with 5-fluoroorotic acid as a selective reagent. Finally, the genetic transformation system was successfully established in the guanophilic fungus strain LC5815, which lays the foundation for the molecular genetics research and will facilitate the exploitation of bioactive secondary metabolites in fungi.
Collapse
Affiliation(s)
- Min Liang
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, China; (M.L.); (L.Q.); (G.C.)
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (W.L.); (L.C.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (W.L.); (L.C.)
| | - Landa Qi
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, China; (M.L.); (L.Q.); (G.C.)
| | - Guocan Chen
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, China; (M.L.); (L.Q.); (G.C.)
| | - Lei Cai
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (W.L.); (L.C.)
| | - Wen-Bing Yin
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (W.L.); (L.C.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-6480-6170
| |
Collapse
|
6
|
Rang J, Zhu Z, Li Y, Cao L, He H, Tang J, Hu J, Chen J, Hu S, Huang W, Yu Z, Ding X, Sun Y, Xie Q, Xia L. Identification of a TetR family regulator and a polyketide synthase gene cluster involved in growth development and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. Appl Microbiol Biotechnol 2021; 105:1519-1533. [PMID: 33484320 DOI: 10.1007/s00253-021-11105-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and broad pesticidal spectrum. However, its synthetic level was low in the wild-type strain. At present, important functional genes involved in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently editing its genome to improve the butenyl-spinosyn yield. To accelerate the genetic modification of S. pogona, we conducted comparative proteomics analysis to screen differentially expressed proteins related to butenyl-spinosyn biosynthesis. A TetR family regulatory protein was selected from the 289 differentially expressed proteins, and its encoding gene (SP_1288) was successfully deleted by CRISPR/Cas9 system. We further deleted a 32-kb polyketide synthase gene cluster (cluster 28) to reduce the competition for precursors. Phenotypic analysis revealed that the deletion of the SP_1288 and cluster 28 resulted in a 3.10-fold increase and a 35.4% decrease in the butenyl-spinosyn levels compared with the wild-type strain, respectively. The deletion of cluster 28 affected the cell growth, glucose consumption, mycelium morphology, and sporulation by controlling the expression of ptsH, ptsI, amfC, and other genes related to sporulation, whereas SP_1288 did not. These findings confirmed not only that the CRISPR/Cas9 system can be applied to the S. pogona genome editing but also that SP_1288 and cluster 28 are closely related to the butenyl-spinosyn biosynthesis and growth development of S. pogona. The strategy reported here will be useful to reveal the regulatory mechanism of butenyl-spinosyn and improve antibiotic production in other actinomycetes. KEY POINTS: • SP_1288 deletion can significantly promote the butenyl-spinosyn biosynthesis. • Cluster 28 deletion showed pleiotropic effects on S. pogona. • SP_1288 and cluster 28 were deleted by CRISPR/Cas9 system in S. pogona.
Collapse
Affiliation(s)
- Jie Rang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Zirong Zhu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunlong Li
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Haocheng He
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianli Tang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jinjuan Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jianming Chen
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weitao Huang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ziquan Yu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xuezhi Ding
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunjun Sun
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
7
|
Rang J, He H, Yuan S, Tang J, Liu Z, Xia Z, Khan TA, Hu S, Yu Z, Hu Y, Sun Y, Huang W, Ding X, Xia L. Deciphering the Metabolic Pathway Difference Between Saccharopolyspora pogona and Saccharopolyspora spinosa by Comparative Proteomics and Metabonomics. Front Microbiol 2020; 11:396. [PMID: 32256469 PMCID: PMC7093602 DOI: 10.3389/fmicb.2020.00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Butenyl-spinosyn, a secondary metabolite produced by Saccharopolyspora pogona, exhibits strong insecticidal activity than spinosyn. However, the low synthesis capacity and unknown metabolic characteristics of butenyl-spinosyn in wild-type S. pogona limit its broad application and metabolic engineering. Here, we showed that S. pogona exhibited increased glucose consumption ability and growth rate compared with S. spinosa, but the production of butenyl-spinosyn was much lower than that of spinosyn. To further elucidate the metabolic mechanism of these different phenotypes, we performed a comparative proteomic and metabolomic study on S. pogona and S. spinosa to identify the change in the abundance levels of proteins and metabolites. We found that the abundance of most proteins and metabolites associated with glucose transport, fatty acid metabolism, tricarboxylic acid cycle, amino acid metabolism, energy metabolism, purine and pyrimidine metabolism, and target product biosynthesis in S. pogona was higher than that in S. spinosa. However, the overall abundance of proteins involved in butenyl-spinosyn biosynthesis was much lower than that of the high-abundance protein chaperonin GroEL, such as the enzymes related to rhamnose synthesis. We speculated that these protein and metabolite abundance changes may be directly responsible for the above phenotypic changes in S. pogona and S. spinosa, especially affecting butenyl-spinosyn biosynthesis. Further studies revealed that the over-expression of the rhamnose synthetic genes and methionine adenosyltransferase gene could effectively improve the production of butenyl-spinosyn by 2.69- and 3.03-fold, respectively, confirming the reliability of this conjecture. This work presents the first comparative proteomics and metabolomics study of S. pogona and S. spinosa, providing new insights into the novel links of phenotypic change and metabolic difference between two strains. The result will be valuable in designing strategies to promote the biosynthesis of butenyl-spinosyn by metabolic engineering.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Tahir Ali Khan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yibo Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Weitao Huang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann E. Challenges and advances in genetic manipulation of filamentous actinomycetes - the remarkable producers of specialized metabolites. Nat Prod Rep 2019; 36:1351-1369. [PMID: 31517370 DOI: 10.1039/c9np00029a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to February 2019Actinomycetes are Gram positive bacteria of the phylum Actinobacteria. These organisms are one of the most important sources of structurally diverse, clinically used antibiotics and other valuable bioactive products, as well as biotechnologically relevant enzymes. Most strains were discovered by their ability to produce a given molecule and were often poorly characterized, physiologically and genetically. The development of genetic methods for Streptomyces and related filamentous actinomycetes has led to the successful manipulation of antibiotic biosynthesis to attain structural modification of microbial metabolites that would have been inaccessible by chemical means and improved production yields. Moreover, genome mining reveals that actinomycete genomes contain multiple biosynthetic gene clusters (BGCs), however only a few of them are expressed under standard laboratory conditions, leading to the production of the respective compound(s). Thus, to access and activate the so-called "silent" BGCs, to improve their biosynthetic potential and to discover novel natural products methodologies for genetic manipulation are required. Although different methods have been applied for many actinomycete strains, genetic engineering is still remaining very challenging for some "underexplored" and poorly characterized actinomycetes. This review summarizes the strategies developed to overcome the obstacles to genetic manipulation of actinomycetes and allowing thereby rational genetic engineering of this industrially relevant group of microorganisms. At the end of this review we give some tips to researchers with limited or no previous experience in genetic manipulation of actinomycetes. The article covers the most relevant literature published until February 2019.
Collapse
Affiliation(s)
- Ewa M Musiol-Kroll
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| | | | | | - Evi Stegmann
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| |
Collapse
|
9
|
Ren N, Liu J, Yang D, Liu X, Zhou J, Peng Y. Preparation and Regeneration of Protoplasts from the Ethyl Vincamine Producing Fungus CH1 ( Geomyces sp.). Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vinpocetine, a semi-synthetic compound derived from the alkaloid vincamine, exhibits effective pharmacological activities for the treatment and prevention of cerebrovascular circulation and vascular cognitive disorders. Vinpocetine can be produced through a one-step chemical reaction beginning with ethyl vincamine, and a two-step chemical reaction beginning with vincamine. In our previous study, the endophytic fungus CH1, Geomyces sp., was isolated and identified as a producer of ethyl vincamine, which was first obtained by endophytic fungal fermentation. However, the production was largely limited. Fungal protoplasts are a valuable experimental tool for physiological and genetic research such as protoplast fusion, gene transfer and metabolite production. In this paper, we optimized some key factors for the preparation and regeneration of protoplasts from strain CH1. Using an enzymes mixture consisting of cellulase (2.0%, w/v), glusulase (3.0%, w/v) and driselase (1.0%, w/v) in osmotic stabilizer (0.7 mol/L NaCl), the highest yield of protoplasts (6.78×107/mL) was obtained with mycelia after 72 h at pH 5.0-6.0 by digesting for 1.5 h at 30°C. After purification of the prepared protoplasts, they were regenerated in the regeneration medium using a bilayer plate culture method.
Collapse
Affiliation(s)
- Na Ren
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Vocational College of Science and Technology, Changsha, China
| | - Jiajia Liu
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Dongliang Yang
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Vocational College of Science and Technology, Changsha, China
| | - Xiong Liu
- College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Jing Zhou
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yingzi Peng
- Department of Pharmacy Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
10
|
Mosunova OV, Vasina DV, Tyazhelova TV, Landesman EO, Koroleva OV. Preparation of protoplasts of the fungus Trametes hirsuta 072 and study of the effect of antioxidants on their formation and regeneration. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816030145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Yu J, Zhang Y, Cui H, Hu P, Yu X, Ye Z. An efficient genetic manipulation protocol for Ustilago esculenta. FEMS Microbiol Lett 2015; 362:fnv087. [PMID: 26038251 DOI: 10.1093/femsle/fnv087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2015] [Indexed: 11/14/2022] Open
Abstract
Ustilago esculenta grows within the flowering stem of the aquatic grass Zizania latifolia, resembling a fungal endophyte. The fungus colonizes Z. latifolia and induces swelling which results in the formation of galls near the base of the plant. Due to their unique flavor and textures these galls are considered as a delicacy in southern China. Efficient genetic manipulation is required to determine the relationship between U. esculenta and Z. latifolia. In this study, we report a protoplast-based transformation system for this unique fungal species. We have explored various factors (enzyme digesting conditions, osmotic pressure stabilizers, vectors and selection agents) that might impact protoplast yield and high frequencies of transformation. A haploid strain (UeT55) of U. esculenta was found to produce higher yields of protoplasts when treating with 15 mg mL(-1) lywallzyme in a sucrose-containing solution at 30°C for 3 h. The transformation frequencies were higher when fungal strain was transformed with a linear plasmid harboring hygromycin or carboxin resistance gene and regenerated on a sucrose-containing medium. A UeICL gene (coding isocitrate lyase) was disrupted and an EGFP (coding enhanced green fluorescent protein) gene was overexpressed successfully in the UeT55 strain using the developed conditions. The genetic manipulation system reported in this study will open up new opportunities for forward and reverse genetics in U. esculenta.
Collapse
Affiliation(s)
- Jiajia Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Peng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|