1
|
Yang Z, Zhang Y, Zhao Q, Du S, Huang X, Wu R, Yan Q, Han X, Wen Y, Cao SJ. HbpA from Glaesserella parasuis induces an inflammatory response in 3D4/21 cells by activating the MAPK and NF-κB signalling pathways and protects mice against G. parasuis when used as an immunogen. Vet Res 2024; 55:93. [PMID: 39075605 PMCID: PMC11285476 DOI: 10.1186/s13567-024-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Glaesserella parasuis is usually a benign swine commensal in the upper respiratory tract, but virulent strains can cause systemic infection characterized by pneumonia, meningitis, and fibrinous polyserositis. The intensive pulmonary inflammatory response following G. parasuis infection is the main cause of lung injury and death in pigs. Vaccination has failed to control the disease due to the lack of extended cross-protection. Accumulating evidence indicates that the heme-binding protein A (HbpA) is a potential virulence determinant and a promising antigen candidate for the development of a broader range of vaccines. However, it is not yet known whether HbpA contributes to G. parasuis virulence or has any potential immune protective effects against G. parasuis. Here, we show that HbpA can induce the transcription and secretion of proinflammatory cytokines (IL-6, TNF-α, and MCP-1) in porcine alveolar macrophages (PAM, 3D4/31). The HbpA protein is recognized by Toll-like receptors 2 and 4 on 3D4/21 macrophages, resulting in the activation of MAP kinase and NF-κB signalling cascades and the transcription and secretion of proinflammatory cytokines. HbpA contributes to virulence and bacterial pulmonary colonization in C57BL/6 mice and plays a role in adhesion to host cells and evasion of the bactericidal effect of pulmonary macrophages. In addition, mice immunized with HbpA were partially protected against challenge by G. parasuis SC1401. The results suggest that HbpA plays an important role in the pathogenesis of disease caused by G. parasuis and lay a foundation for the development of a subunit or chimeric anti-G. parasuis vaccine.
Collapse
Affiliation(s)
- Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - San-Jie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Wang X, Xu F, Ning K, Shen L, Qi X, Wang J. Construction and Application of MALDI-TOF Mass Spectrometry for the Detection of Haemophilus parasuis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5588855. [PMID: 33937398 PMCID: PMC8062181 DOI: 10.1155/2021/5588855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 01/02/2023]
Abstract
To construct a protein fingerprint database of Haemophilus parasuis (H. parasuis), thus improving its clinical diagnosis efficiency. A total of 15 H. parasuis standard strains were collected to establish a protein fingerprint database of H. parasuis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and the effects of different culture media and culture time on the quality and identification results of the protein fingerprint were investigated. The results showed that tryptone soy agar (TSA) and tryptone soy broth (TSB) media and different incubation times had no significant effect on the characteristic peaks of the protein profiles. In addition, 18 clinical isolates were used to compare the identification results of the self-built protein fingerprint database, PCR detection, and basic database. Only one strain was identified in the original VITEK-MS system database, while the self-made protein fingerprint database of H. parasuis was 100% accurate for the detection of 18 clinical isolate strains. The protein fingerprint database of H. parasuis built by our laboratory is suitable for rapid clinical diagnosis of H. parasuis, due to its high accuracy, efficiency, and strong specificity.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Shanghai Animal Disease Control Center, 855 Hongjin Road, Shanghai 201103, China
| | - Feng Xu
- Shanghai Animal Disease Control Center, 855 Hongjin Road, Shanghai 201103, China
| | - Kun Ning
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liping Shen
- Shanghai Animal Disease Control Center, 855 Hongjin Road, Shanghai 201103, China
| | - Xinyong Qi
- Shanghai Animal Disease Control Center, 855 Hongjin Road, Shanghai 201103, China
| | - Jian Wang
- Shanghai Animal Disease Control Center, 855 Hongjin Road, Shanghai 201103, China
| |
Collapse
|
3
|
Guo G, Qin S, Kong X, Wang Z, Shen Y, Huo X, Zhang W. Identification of novel fibronectin-binding proteins by 2D-far Western blot in atypical enteropathogenic Escherichia coli serotype O55:H7. Microb Pathog 2020; 150:104682. [PMID: 33296715 DOI: 10.1016/j.micpath.2020.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is a subgroup of EPEC, which is one of the major pathogens responsible for fatal diarrhoea in children. Compared with typical EPEC (tEPEC), aEPEC lack an EAF (EPEC adherence factor) plasmid (pEAF), which encodes a series of virulence-associated genes. The extracellular matrix (ECM) component of human cells has been reported to be an important element in the interaction between host and bacterial pathogens. In this research, a 2D-Far Western blot method was performed to identifiy the bacterial proteins that could bind to fibronectin, one of the most common constituents of ECM. A total of 17 protein spots were identified, including 4 outer membrane proteins (OMPs), namely, OmpC, OmpD, OmpX and LamB. In vitro studies were used to determine whether these OMPs were involved in the adherence process. Through indirect immunofluorescence assays, four OMPs could be observed on the surfaces of host cells. After incubating the cells with the recombinant proteins, the adhesion rate of the O55:H7 isolate was decreased. Furthermore, the deletion of OmpX and LamB can also decrease the adhesion rate of WT. Taken together, a high-throughput screening method for host ECM-binding proteins based on 2D Far-Western blot was established, and four outer membrane proteins identified by this method were found to be involved in the adherence process.
Collapse
Affiliation(s)
- Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Si Qin
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Xuewei Kong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Zhuohao Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Yun Shen
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Xiang Huo
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
4
|
Li G, Xie F, Li J, Liu J, Li D, Zhang Y, Langford PR, Li Y, Liu S, Wang C. Identification of novel Haemophilus parasuis serovar 5 vaccine candidates using an immunoproteomic approach. J Proteomics 2017; 163:111-117. [PMID: 28528009 DOI: 10.1016/j.jprot.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Haemophilus parasuis is the aetiological agent of Glässer's disease, which is responsible for cases of fibrinous polyserositis, polyarthritis and meningitis. No vaccine is known that provides cross-protection against all serovars. The identification of novel immunoprotective antigens would undoubtedly contribute to the development of efficient subunit vaccines. In the present study, an immunoproteomic approach was used to analyze secreted proteins of H. parasuis and six proteins with high immunogenicity were identified. Five of them were successfully expressed, and their immunogenicity and protective efficacy were assessed in a mouse challenge model. All five proteins elicited strong humoral antibody and cellular immune responses in mice. They all effectively reduced the growth of H. parasuis in mouse organs and conferred different levels of protection (40-80%) against challenge. IgG subtype analysis revealed that the five proteins induce a bias toward a Th1-type immune response, and a significant increase was observed in the cytokine levels of IL-2, IFN-γ and Th2-specific IL-4 in the culture supernatants of splenocytes isolated from immunized mice. The results suggest that both Th1 and Th2 responses are involved in mediating protection. These data suggest that the five proteins could be potential subunit vaccine candidates for use to prevent H. parasuis infection. BIOLOGICAL SIGNIFICANCE Haemophilus parasuis can cause huge financial loss in the swine industry worldwide. There are still no vaccines which can provide cross-protection against all serovars. To address this need, we applied an immunoproteomic approach involving 2-DE, MALDI-TOF/TOF MS and Western-blot to identify the secreted proteins which may be able to provide immunoprotection to this disease. We identified six immunogenic proteins, and the immunogenicity and protective efficacy were validated. This result provides a foundation for developing novel subunit vaccines against Haemophilus parasuis.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianjun Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiao Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dapeng Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
5
|
Omp16-based vaccine encapsulated by alginate-chitosan microspheres provides significant protection against Haemophilus parasuis in mice. Vaccine 2017; 35:1417-1423. [PMID: 28187951 DOI: 10.1016/j.vaccine.2017.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
Haemophilus parasuis (H. parasuis) is the etiological agent of swine Glässer's disease, which leads to significant economic loss in swine industry over the world. Subunit vaccine based on outer membrane protein is one of the promising choices to protect pigs against H. parasuis infection despite low immunity efficiency. In this paper, outer membrane protein 16 (Omp16) of H. parasuis encapsulated by alginate-chitosan microspheres as antigen carriers was explored for the first time in a mouse model. Our results showed that the microspheres with Omp16 induced significant higher H. parasuis-specific antibodies, and higher titers of IL-2, IL-4, and IFN-γ than those by Omp16-FIA in treated mice (p<0.05). Moreover, H. parasuis load in the tissues from liver, spleen, and lung of mice immunized with microspheres containing Omp16 was significantly decreased (p<0.05) than that in the same counterpart tissues of control groups. In addition, 80% mice treated with Omp16 and 70% mice with Omp16-FIA were survived after challenged with H. parasuis virulent strain LY02 (serovar 5). Therefore, Omp16-based microsphere vaccine induces both humoral and cellular immune responses and provides promising protection against H. parasuis infection in mice.
Collapse
|
6
|
Liu H, Xue Q, Zeng Q, Zhao Z. Haemophilus parasuis vaccines. Vet Immunol Immunopathol 2016; 180:53-58. [DOI: 10.1016/j.vetimm.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 11/24/2022]
|
7
|
Complete Genome Sequence of Highly Virulent Haemophilus parasuis Serotype 11 Strain SC1401. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00628-16. [PMID: 27445368 PMCID: PMC4956441 DOI: 10.1128/genomea.00628-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemophilus parasuis, a normal Gram-negative bacterium, may cause Glässer’s disease and pneumonia in pigs. This study aims to identify the genes related to natural competence of the serotype 11 strain SC1401, which frequently shows competence and high pathogenicity. SC1401 shows many differences from strains without natural competence within the molecular basis. We performed complete genome sequencing together with restriction modification system analysis to lay the foundation for later study.
Collapse
|
8
|
Macedo N, Rovira A, Torremorell M. Haemophilus parasuis: infection, immunity and enrofloxacin. Vet Res 2015; 46:128. [PMID: 26511717 PMCID: PMC4625873 DOI: 10.1186/s13567-015-0263-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022] Open
Abstract
Haemophilus parasuis is an early colonizer of the porcine upper respiratory tract and is the etiological agent of Glasser’s disease. The factors responsible for H. parasuis colonization and systemic infection are not yet well understood, while prevention and control of Glasser’s disease continues to be challenging. Recent studies on innate immunity to H. parasuis have demonstrated that porcine alveolar macrophages (PAMs) are able to differentially up-regulate several genes related to inflammation and phagocytosis, and several pro-inflammatory cytokines are produced by porcine cells upon exposure to H. parasuis. The susceptibility of H. parasuis strains to phagocytosis by PAMs and the bactericidal effect of complement are influenced by the virulent phenotype of the strains. While non-virulent strains are susceptible to phagocytosis and complement, virulent strains are resistant to both. However, in the presence of specific antibodies against H. parasuis, virulent strains become susceptible to phagocytosis. More information is still needed, though, in order to better understand the host immune responses to H. parasuis. Antimicrobials are commonly used in the swine industry to help treat and control Glasser’s disease. Some of the common antimicrobials have been shown to reduce colonization by H. parasuis, which may have implications for disease dynamics, development of effective immune responses and immunomodulation. Here, we provide the current state of research on innate and adaptive immune responses to H. parasuis and discuss the potential effect of enrofloxacin on the development of a protective immune response against H. parasuis infection.
Collapse
Affiliation(s)
- Nubia Macedo
- College of Veterinary Medicine, University of Minnesota, 1988 Fitch Ave, St. Paul, MN, 55108, USA.
| | - Albert Rovira
- College of Veterinary Medicine, University of Minnesota, 1988 Fitch Ave, St. Paul, MN, 55108, USA.
| | - Montserrat Torremorell
- College of Veterinary Medicine, University of Minnesota, 1988 Fitch Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
9
|
Xiao X, Sun J, Chen Y, Huang RJ, Huang T, Qiao GG, Zhou YF, Liu YH. In vitro dynamic pharmacokinetic/pharmacodynamic(PK/PD) modeling and PK/PD cutoff of cefquinome against Haemophilus parasuis. BMC Vet Res 2015; 11:33. [PMID: 25889187 PMCID: PMC4350951 DOI: 10.1186/s12917-015-0343-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Haemophilus parasuis (H. parasuis) causes Glässer's disease and multisystem infectious disease. It is one of the major causes of nursery mortality in swine herds. Cefquinome (CEQ) is proposed for the treatment of pigs against respiratory tract infection. However, few studies have investigated the PK/PD characteristics and PK/PD cutoff of this drug against H. parasuis. RESULTS A total of 213 H. parasuis strains were isolated from diseased pigs in China. The minimal inhibitory concentrations (MICs) of CEQ against these isolates were determined. The MIC(50) and MIC(90) values were 0.125 and 8 mg/L, respectively. An in vitro dynamic PK/PD infection model was used to investigate the antimicrobial effect of CEQ against H. parasuis strain of serotype 5. The target values of CEQ for 3-log(10)-unit and 4-log10-unit decreases effects were the percent time that CEQ concentrations were above the minimum inhibitory concentration (T% > MIC) of 61 and 71 respectively. According to Monte Carlo simulation, the PK/PD cutoff for CEQ against H. parasuis was 0.06 mg/L. The suggested dose regimen was 4 mg/kg/12 h BW. CONCLUSIONS The value of PK/PD surrogate marker T% > MIC is of great utility in CEQ clinical usage. The very first CEQ PK/PD cutoff provide fundamental data for CEQ breakpoint determination. A more desirable dose regimen against H. parasuis was provided for CEQ using in China district.
Collapse
Affiliation(s)
- Xia Xiao
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, 510642, China.
| | - Jian Sun
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, 510642, China.
| | - Yi Chen
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, 510642, China.
| | - Rui-Juan Huang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, 510642, China.
| | - Ting Huang
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, 510642, China.
| | - Guilin Gary Qiao
- , 8725, John J Kingman Rd, MS 6201, Ft Belvoir, VA, 22060-6201, USA.
| | - Yu-Feng Zhou
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, 510642, China.
| | - Ya-Hong Liu
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues (SCAU), South China Agricultural University, Guangzhou, 510642, China.
- Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|