1
|
Yang L, Kong DX, Xiao N, Ma QY, Xie QY, Guo JC, Ying Deng C, Ma HX, Hua Y, Dai HF, Zhao YX. Antidiabetic lanostane triterpenoids from the fruiting bodies of Ganoderma weberianum. Bioorg Chem 2022; 127:106025. [PMID: 35868103 DOI: 10.1016/j.bioorg.2022.106025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/17/2022]
Abstract
Eight previously undescribed lanostane triterpenoids, ganodeweberiols A ∼ H (1-8), together with eighteen known compounds (9-26), were isolated from the fruiting bodies of Ganoderma weberianum. The structures and absolute configurations of the new compounds were determined by extensive spectroscopic analysis, as well as NMR chemical shifts and electronic circular dichroism (ECD) calculations. Compounds 2, 7, 12, and 14 showed significant α-glucosidase inhibitory activity with IC50 values ranging from 35.3 μM ∼ 223.4 μM compared to the positive control acarbose (IC50, 304.6 μM). Kinetic study indicated that the most potent compound 12 was a mixed type inhibitor for α-glucosidase. Molecular docking simulation revealed the interactions of 12 with α-glucosidase. Additionally, Compounds 3 and 6 inhibited glucagon-induced hepatic glucose production in HepG2 cells with EC50 values of 42.0 and 85.9 μM, respectively. Further study revealed that compounds 3 and 6 inhibited hepatic glucose production by suppression glucagon-induced cAMP accumulation. Moreover, compounds 3 and 26 were active against HeLa cell line with IC50 values of 17.0 and 6.8 μM, respectively.
Collapse
Affiliation(s)
- Li Yang
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - De-Xian Kong
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Na Xiao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture University, Tai'an, Shandong 271018, China
| | - Qing-Yun Ma
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Qing-Yi Xie
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Jiao-Cen Guo
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Chun Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China
| | - Hai-Xia Ma
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Yan Hua
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Hao-Fu Dai
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China.
| | - You-Xing Zhao
- Hainan Academy of Tropical Agricultural Resource, Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China.
| |
Collapse
|
2
|
Chauhan A, Modgil M, Rajam MV. Establishment of Agrobacterium tumefaciens - mediated genetic transformation of apple pathogen Marssonina coronaria using marker genes under the control of CaMV 35S promoter. Microbiol Res 2021; 253:126878. [PMID: 34607236 DOI: 10.1016/j.micres.2021.126878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Premature leaf fall of apple caused by Marssonina coronaria is economically very important apple disease and all the commercially available apple cultivars are susceptible to this disease. The non-availability of an efficient transformation system for this fungus hinders the functional genomics research. Herein, we report for the first time, the successful Agrobacterium-mediated transformation in apple leaf blotch fungus M. coronaria by transferring T-DNA harbouring the genes for hygromycin phosphotransferase (hpt), β-glucuronidase (uidA) and green fluorescent protein (gfp) under the control of CaMV 35S promoter. The key factors that affect the transformation efficiency including type of recipient fungal material, acetosyringone concentration, the conditions for co-cultivation, Agrobacterium concentration, Agrobacterium strains and membrane types as support were investigated. The present results have recommended that 250 μM concentration of acetosyringone, 24 °C temperature and 48 h time, 0.5 OD600 of A. tumefaciens, EHA105 Agrobacterium strain and Whatman filter paper were the optimal co-cultivation conditions for the transformation of M. coronaria by using fragmented mycelia suspension and mycelial plugs. We observed that conidia were tedious to transform as compared to the fragmented mycelia and mycelial plugs of this slow growing fungus. These optimized parameters yielded 54 and 70 average transformants per 60 mycelial plugs and 104 fragmented mycelia, respectively. Fungal transformants were analysed for T-DNA integration, gus gene expression and gfp gene expression. Strong gus histochemical staining and green fluorescence expression indicated that the CaMV 35S promoter can drive gene expression in M. croronaria. Some mutants showed difference in the morphology of the colony as compared to the wild type control. This report will be very useful to inspect molecular basis of apple-M. coronaria interactions by deciphering the functional roles of various genes in this pathogenic fungus.
Collapse
Affiliation(s)
- Arjun Chauhan
- Department of Biotechnology, College of Horticulture, Dr Y S Parmar University of Horticulture and Forestry, Solan, HP, 173230, India
| | - Manju Modgil
- Department of Biotechnology, College of Horticulture, Dr Y S Parmar University of Horticulture and Forestry, Solan, HP, 173230, India.
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Marg, New Delhi, 110021, India
| |
Collapse
|
3
|
Lim FH, Rasid OA, Idris AS, As'wad AWM, Vadamalai G, Parveez GKA, Wong MY. Enhanced polyethylene glycol (PEG)-mediated protoplast transformation system for the phytopathogenic fungus, Ganoderma boninense. Folia Microbiol (Praha) 2021; 66:677-688. [PMID: 34041694 DOI: 10.1007/s12223-021-00852-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
The basidiomycete fungus, Ganoderma boninense, has been identified as the main causal agent of oil palm basal stem rot (BSR) disease which has caused significant economic losses to the industry especially in Malaysia and Indonesia. Various efforts have been initiated to understand the disease and this plant pathogen especially at the molecular level. This is the first study of its kind on the development of a polyethylene glycol (PEG)-mediated protoplast transformation system for G. boninense. Based on the minimal inhibitory concentration study, 60 µg/mL and above of hygromycin were effective to completely inhibit G. boninense growth. Approximately 5.145 × 107 cells/mL of protoplasts with the viability of 97.24% was successfully obtained from G. boninense mycelium tissue. The PEG-mediated G. boninense protoplast transformation using 1 µg of transformation vector, 25% of PEG solution, 10 min of pre-transformation incubation, and 30 min of post-transformation incubation has improved the transformation rate as compared with the previous reported protocols for other basidiomycete fungi. Optimization of four transformation parameters has improved the transformation efficiency of G. boninense from an average of 2 to 67 putative transformants. The presence of hygromycin phosphotransferase (hpt) and enhanced green fluorescent protein (eGFP) genes in the putative transformants was detected by PCR and verified by gene sequence analysis. Southern hybridization result further confirmed the integration of hpt gene in G. boninense transformants, and the green fluorescent signal was detected in the G. boninense transformants under the microscopic analysis. The establishment of this transformation system will accelerate the gene function studies of G. boninense especially those genes that may contribute to the pathogenesis of this fungus in oil palm.
Collapse
Affiliation(s)
- Fook-Hwa Lim
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | - Omar Abd Rasid
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abu Seman Idris
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abdul Wahab Mohd As'wad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Ganesan Vadamalai
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Govender N, Wong MY. Detection of Oil Palm Root Penetration by Agrobacterium-Mediated Transformed Ganoderma boninense, Expressing Green Fluorescent Protein. PHYTOPATHOLOGY 2017; 107:483-490. [PMID: 27918241 DOI: 10.1094/phyto-02-16-0062-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense. The transformation efficiency was highest (62%) under a treatment combination of protoplast explant and Agrobacterium strain LBA4404, with successful expression of an hyg marker gene and gus-gfp fusion gene under the control of heterologous p416 glyceraldehyde 3-phosphate dehydrogenase promoter. Optimal transformation conditions included a 1:100 Agrobacterium/explant ratio, induction of Agrobacterium virulence genes in the presence of 250 μm acetosyringone, co-cultivation at 22°C for 2 days on nitrocellulose membrane overlaid on an induction medium, and regeneration of transformants on potato glucose agar prepared with 0.6 M sucrose and 20 mM phosphate buffer. Evaluated transformants were able to infect root tissues of oil palm plantlets with needle-like microhyphae during the penetration event. The availability of this model pathogen system for BSR may lead to a better understanding of the pathogenicity factors associated with G. boninense penetration into oil palm roots.
Collapse
Affiliation(s)
- Nisha Govender
- First and second authors: Laboratory of Plantation Crops, Institute of Tropical Agriculture, and second author: Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mui-Yun Wong
- First and second authors: Laboratory of Plantation Crops, Institute of Tropical Agriculture, and second author: Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Cell Factories of Higher Fungi for Useful Metabolite Production. BIOREACTOR ENGINEERING RESEARCH AND INDUSTRIAL APPLICATIONS I 2015; 155:199-235. [DOI: 10.1007/10_2015_335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|