1
|
Niu C, Liu G, Yang S, He L, Liu C, Zheng F, Wang J, Li Q. Enhanced expression of a novel trypsin from Streptomyces fradiae in Komagataella phaffii GS115 through combinational strategies of propeptide engineering and self-degredation sites modification. Int J Biol Macromol 2024; 254:127382. [PMID: 37838138 DOI: 10.1016/j.ijbiomac.2023.127382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
This study aimed to enhance the expression level of a novel trypsin gene from Streptomyces fradiae ATCC14544 in Komagataella phaffii GS115 through the combinational use of propeptide engineering and self-degradation residues modification strategies. An artificial propeptide consisted of thioredoxin TrxA, the bovine propeptide DDDDK and the hydrophobic peptide FVEF was introduced to replace the original propeptide while the self-degradation residue sites were predicted and analyzed through alanine screening. The results showed that the quantity and enzymatic activity of asft with engineered propeptide reached 47.02 mg/mL and 33.9 U/mL, which were 9.6 % and 59.29 % higher than those of wild-type (42.9 mg/mL and 13.8 U/mL). Moreover, the introduction of R295A/R315A mutation further enhanced the enzymatic activity (58.86 U/mL) and obviously alleviated the phenomena of self-degradation. The tolerance of trypsin towards alkaline environment was also improved since the optimal pH was shifted from pH 9.0 to pH 9.5 and the half-life value at pH 10 was significantly extended. Finally, the fermentation media composition and condition were optimized and trypsin activity in optimal condition reached 160.58 U/mL, which was 2.73-fold and 11.64-fold of that before optimization or before engineering. The results obtained in this study indicated that the combinational use of propeptide engineering and self-degradation sites modification might have great potential application in production of active trypsins.
Collapse
Affiliation(s)
- Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guozheng Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shijing Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Linman He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Theron CW, Berrios J, Steels S, Telek S, Lecler R, Rodriguez C, Fickers P. Expression of recombinant enhanced green fluorescent protein provides insight into foreign gene‐expression differences betweenMut+andMutSstrains ofPichia pastoris. Yeast 2019; 36:285-296. [DOI: 10.1002/yea.3388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/04/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chrispian W. Theron
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux AgroBio TechUniversity of Liège Gembloux Belgium
| | - Julio Berrios
- Escuela de Ingeniería BioquímicaPontificia Universidad Católica de Valparaíso Valparaíso Chile
| | - Sébastien Steels
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux AgroBio TechUniversity of Liège Gembloux Belgium
| | - Samuel Telek
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux AgroBio TechUniversity of Liège Gembloux Belgium
| | | | | | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux AgroBio TechUniversity of Liège Gembloux Belgium
| |
Collapse
|
3
|
Liu WC, Inwood S, Gong T, Sharma A, Yu LY, Zhu P. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 2019; 39:258-271. [DOI: 10.1080/07388551.2018.1554620] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wan-Cang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Sarah Inwood
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ashish Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| | - Li-Yan Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|