1
|
Cagri MA, Sahin M, Ersoy Y, Aydin C, Buyuk F. Geese as reservoirs of human colon cancer-associated Streptococcus gallolyticus. Res Vet Sci 2024; 176:105341. [PMID: 38963992 DOI: 10.1016/j.rvsc.2024.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Recently, an increased number of reports have described pathogens of animal origin that cause a variety of infections and a rise in their transmission to humans. Streptococcus gallolyticus, a member of the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is one of these pathogens and infects a wide range of hosts from mammals to poultry and has a broad functionality ranging from pathogenicity to food fermentation. As S. gallolyticus causes complications including bacteremia, infective endocarditis, and colorectal malignancy in humans, it is important to investigate its occurrence in various hosts, including geese, to prevent potential zoonotic transmissions. This study aimed to investigate the presence of S. gallolyticus in the droppings of clinically healthy and diarrheic geese, which were raised intensively and semi-intensively, by the in vitro culture method, characterize the isolates recovered by PCR and sequence-based molecular methods and determine their antibiotic susceptibility by the disk diffusion and gradient test methods. For this purpose, 150 samples of fresh goose droppings were used. Culture positivity for S. gallolyticus was determined as 8% (12/150). PCR analysis identified 54.55% (n = 6) of the isolates as S. gallolyticus subsp. gallolyticus and 45.45% (n = 5) as S. gallolyticus subsp. pasteurianus. Following the 16S rRNA sequence and ERIC-PCR analyses, S. gallolyticus subspecies exhibited identical cluster and band profiles that could be easily distinguished from each other and were clonally identified. High rates of susceptibility to florfenicol, penicillin, rifampicin, and vancomycin were detected among the isolates, regardless of the subspecies diversity. Both subspecies showed high levels of resistance to bacitracin, clindamycin, doxycycline, tetracycline, trimethoprim-sulfamethoxazole, and erythromycin and multiple MDR profiles, indicating their potential to become superbugs. This first report from Türkiye demonstrates the occurrence of the S. gallolyticus subspecies in geese. In view of the recent increase of geese production and the consumption of goose meat in Türkiye, the occurrence of S. gallolyticus in geese should not be ignored to prevent zoonotic transmission.
Collapse
Affiliation(s)
| | - Mitat Sahin
- Department of Microbiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye; Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic
| | - Yaren Ersoy
- Institute of Health Sciences, Department of Microbiology, Kafkas University, Kars, Türkiye
| | - Cansu Aydin
- Institute of Health Sciences, Department of Microbiology, Erciyes University, Kayseri, Türkiye
| | - Fatih Buyuk
- Department of Microbiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye.
| |
Collapse
|
2
|
Amin N, Schwarzkopf S, Tröscher-Mußotter J, Camarinha-Silva A, Dänicke S, Huber K, Frahm J, Seifert J. Host metabolome and faecal microbiome shows potential interactions impacted by age and weaning times in calves. Anim Microbiome 2023; 5:12. [PMID: 36788596 PMCID: PMC9926800 DOI: 10.1186/s42523-023-00233-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Calves undergo nutritional, metabolic, and behavioural changes from birth to the entire weaning period. An appropriate selection of weaning age is essential to reduce the negative effects caused by weaning-related dietary transitions. This study monitored the faecal microbiome and plasma metabolome of 59 female Holstein calves during different developmental stages and weaning times (early vs. late) and identified the potential associations of the measured parameters over an experimental period of 140 days. RESULTS A progressive development of the microbiome and metabolome was observed with significant differences according to the weaning groups (weaned at 7 or 17 weeks of age). Faecal samples of young calves were dominated by bifidobacterial and lactobacilli species, while their respective plasma samples showed high concentrations of amino acids (AAs) and biogenic amines (BAs). However, as the calves matured, the abundances of potential fiber-degrading bacteria and the plasma concentrations of sphingomyelins (SMs), few BAs and acylcarnitines (ACs) were increased. Early-weaning at 7 weeks significantly restructured the microbiome towards potential fiber-degrading bacteria and decreased plasma concentrations of most of the AAs and SMs, few BAs and ACs compared to the late-weaning event. Strong associations between faecal microbes, plasma metabolites and calf growth parameters were observed during days 42-98, where the abundances of Bacteroides, Parabacteroides, and Blautia were positively correlated with the plasma concentrations of AAs, BAs and SMs as well as the live weight gain or average daily gain in calves. CONCLUSION The present study reported that weaning at 17 weeks of age was beneficial due to higher growth rate of late-weaned calves during days 42-98 and a quick adaptability of microbiota to weaning-related dietary changes during day 112, suggesting an age-dependent maturation of the gastrointestinal tract. However, the respective plasma samples of late-weaned calves contained several metabolites with differential concentrations to the early-weaned group, suggesting a less abrupt but more-persistent effect of dietary changes on host metabolome compared to the microbiome.
Collapse
Affiliation(s)
- Nida Amin
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sarah Schwarzkopf
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Johanna Tröscher-Mußotter
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Amélia Camarinha-Silva
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Sven Dänicke
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Korinna Huber
- grid.9464.f0000 0001 2290 1502HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany ,grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593 Stuttgart, Germany
| | - Jana Frahm
- grid.417834.dInstitute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Brunswick, Germany
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany. .,Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, 70593, Stuttgart, Germany.
| |
Collapse
|
3
|
Iwanaga M, Imai N, Kamikawa A, Shimada K, Okura M, Takamatsu D, Ueda D, Nakayama M, Shibahara T. Suppurative meningoencephalitis and perineuritis caused by Streptococcus gallolyticus in a Japanese Black calf. J Vet Med Sci 2021; 84:53-58. [PMID: 34819412 PMCID: PMC8810337 DOI: 10.1292/jvms.21-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 179-day-old calf, which was weak and stunted, showed neurological signs and was euthanized. Postmortem examination revealed extensive and severe cloudy area in the meninges, and pleural
pneumonia. Gram-positive cocci were isolated from systemic organs. Biochemical and 16S rRNA gene sequence analyses identified the isolate as Streptococcus gallolyticus, and
its subspecies was suggested to be gallolyticus (SGG). The isolate was classified as a novel sequence type (ST115) by the multilocus sequence typing scheme for SGG and
showed susceptibility to penicillin, ampicillin, amoxicillin, florfenicol, sulfamethoxazole-trimethoprim, and chloramphenicol. Histopathologically, suppurative meningoencephalitis and
perineuritis were detected. As SGG has been isolated solely from a cow with mastitis in Japan, this is the first SGG infection in a calf with suppurative meningoencephalitis and perineuritis
in this country.
Collapse
Affiliation(s)
- Mikuya Iwanaga
- Fukushima Prefectural Chuou Livestock Hygiene Service Center
| | - Naoto Imai
- Fukushima Prefectural Chuou Livestock Hygiene Service Center
| | - Ayaka Kamikawa
- Fukushima Prefectural Chuou Livestock Hygiene Service Center
| | - Kaho Shimada
- Chiba Prefectural Chuou Livestock Hygiene Service Office
| | - Masatoshi Okura
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO)
| | - Daisuke Takamatsu
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO).,The United Graduate School of Veterinary Sciences, Gifu University
| | - Daijiro Ueda
- Saga Prefectural Livestock Hygiene Service Center
| | | | - Tomoyuki Shibahara
- Division of Hygiene Management Research, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO).,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
4
|
Glajzner P, Szewczyk EM, Szemraj M. Pathogenicity and drug resistance of animal streptococci responsible for human infections. J Med Microbiol 2021; 70. [PMID: 33750514 DOI: 10.1099/jmm.0.001339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria of the genus Streptococcus, earlier considered typically animal, currently have also been causing infections in humans. It is necessary to make clinicians aware of the emergence of new species that may cause the development of human diseases. There is an increasing frequency of isolation of streptococci such as S. suis, S. dysgalactiae, S. iniae and S. equi from people. Isolation of Streptococcus bovis/Streptococcus equinus complex bacteria has also been reported. The streptococcal species described in this review are gaining new properties and virulence factors by which they can thrive in new environments. It shows the potential of these bacteria to changes in the genome and the settlement of new hosts. Information is presented on clinical cases that concern streptococcus species belonging to the groups Bovis, Pyogenic and Suis. We also present the antibiotic resistance profiles of these bacteria. The emerging resistance to β-lactams has been reported. In this review, the classification, clinical characteristics and antibiotic resistance of groups and species of streptococci considered as animal pathogens are summarized.
Collapse
Affiliation(s)
- Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Eligia Maria Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Hess C, Jandreski-Cvetkovic D, Liebhart D, Bilic I, Hess M. Outbreaks of Streptococcus gallolyticus subsp. pasteurianus in Goslings Characterized by Central Nervous Symptoms. Avian Dis 2020; 65:165-170. [PMID: 34339136 DOI: 10.1637/aviandiseases-d-20-00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/06/2020] [Indexed: 11/05/2022]
Abstract
The present report describes outbreaks of Streptococcus gallolyticus subsp. pasteurianus in young geese flocks in Austria. The flocks, comprising 160-1450 goslings of 2-3 wk of age, experienced increased mortalities The clinical signs were characterized by severe central nervous symptoms, namely leg paddling and torticollis. The postmortem investigation revealed hepatitis, splenitis, and a low amount of liquid fluid in the coelomic cavity. Livers were of fragile texture, with white necrotic areas. The latter were also found in spleens. No macroscopic lesions were seen in brains. Bacteriologic investigation followed by bacterial identification by matrix-assisted laser desorption time-of-flight mass spectrometry and phylogenetic analysis of the partial 16S rRNA region revealed the presence in heart, liver, spleen, and brain of S. gallolyticus subsp. pasteurianus. Histologic investigation revealed multifocal necrosis in liver and spleen samples together with infiltration of mononuclear cells and heterophilic granulocytes. Furthermore, in the lesions, coccoid bacteria could be identified. No histopathologic changes were observed in brain samples from goslings, except in one bird in which accumulation of coccoid bacteria in blood vessels of the brain samples was present. Antibiotic sensitivity tests revealed identical profiles for all strains, which were susceptible to penicillins, cephalosporins, chloramphenicol, imipenem, and tylosin. However, resistance was found against quinolones, aminoglycosides, tetracycline, and trimethoprim-sulfamethoxazole, which are commonly used to treat infections with gram-positive bacteria.
Collapse
Affiliation(s)
- C Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria,
| | - D Jandreski-Cvetkovic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - D Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - I Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - M Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
6
|
Wickramasinghe HKJP, Anast JM, Schmitz-Esser S, Serão NVL, Appuhamy JADRN. Beginning to offer drinking water at birth increases the species richness and the abundance of Faecalibacterium and Bifidobacterium in the gut of preweaned dairy calves. J Dairy Sci 2020; 103:4262-4274. [PMID: 32171510 DOI: 10.3168/jds.2019-17258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
We previously demonstrated that dairy calves having access to drinking water since birth (W0) achieved greater body weight, fiber digestibility, and feed efficiency than those that first received drinking water at 17 d of age (W17). Since gut microbiota composition could be linked to growth and development of animals, the objective of this study was to examine the effect of offering drinking water to newborn calves on composition of bacteria in the gut using a fecal microbiota analysis. Fresh feces were collected directly from the rectum of calves in W0 (n = 14) and W17 (n = 15) at 2, 6, and 10 wk of age. All of the calves were fed pasteurized waste milk, weaned at 7 wk of age, and offered tap water according to the treatment. The DNA was sequenced using 16S rRNA gene-amplicon sequencing on an Illumina MiSeq system (Illumina Inc., San Diego, CA). The sequences were clustered into operational taxonomic units (OTU) with a 99% similarity threshold. Treatment effects on α-diversity indices and relative abundance of the 10 most abundant genera were analyzed using GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). Statistical significance (q-value) of treatment effects on the 50 most abundant OTU was determined with a false discovery rate analysis. At 2 wk of age, W0 had a greater number of observed OTU (5,908 vs. 4,698) and species richness (Chao 1 index) than W17. The number of OTU and richness indices increased from wk 2 to 6, but the increment of W17 was greater than that of W0. The Shannon and inverse-Simpson indices increased linearly with age, but no difference was observed between W0 and W17 at any time point. The Firmicutes to Bacteroidetes ratios were also similar at every time point but decreased markedly when calves were weaned. The relative abundance of genera Faecalibacterium and Bacteroides was greater in W0 than W17 at 2 wk of age. The genus Faecalibacterium continued to be more abundant in W0 than W17 at 6 wk of age but had similar abundance 3 wk after weaning (10 wk of age). The abundance of Faecalibacterium at wk 6 was positively correlated with apparent total-tract digestibility of acid detergent fiber at 10 wk of age. Calves receiving water since birth had greater abundance of OTU related to Faecalibacterium prausnitzii, and Bifidobacterium breve at 6 wk of age (q < 0.085). These species are known to improve growth in preweaned calves. The abundance of none of the genera and OTU was different between W0 at W17 at 10 wk of age (q > 0.100). Overall, beginning to offer drinking water at birth has a potential to modulate gut microbiota composition and thereby positively affect performance of young dairy heifer calves (≤10 wk of age).
Collapse
Affiliation(s)
| | - J M Anast
- Department of Animal Science, Iowa State University, Ames 50011; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames 50011
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames 50011; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames 50011
| | - N V L Serão
- Department of Animal Science, Iowa State University, Ames 50011
| | | |
Collapse
|
7
|
Trotta A, Sposato A, Marinaro M, Zizzo N, Passantino G, Parisi A, Buonavoglia D, Corrente M. Neurological symptoms and mortality associated with Streptococcus gallolyticus subsp. pasteurianus in calves. Vet Microbiol 2019; 236:108369. [PMID: 31500733 DOI: 10.1016/j.vetmic.2019.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/24/2022]
Abstract
Suppurative meningitis-meningoencephalitis (M-ME) is a sporadic disease in neonatal ungulates and only a few studies have reported the involvement of Streptococcus bovis/Streptococcus equinus complex (SBSEC) members in bovine neonatal M-ME. The SBSEC taxonomy was recent revised and previous biotype II/2 was reclassified as S. gallolyticus subsp. pasteurianus (SGP). The aim of this study was to describe a case of fatal neonatal neurological syndrome associated with SGP in calves. Ten calves were monitored because of neurological hyperacute symptoms associate with bilateral hypopyon and death. They were not fed with maternal colostrum; two of them died and were subjected to bacteriological, histopathological and biomolecular analysis as well as antibiotic susceptibility test. Both animals presented lesions mostly concentrated to meninges and brain and had bilateral hypopyon. Nine strains isolated in purity from brain, ocular humors and colon were identified as S. bovis group by using the API Strep system and as S. gallolyticus by using the 16S rRNA sequence. Two of these strains where subjected to WGS analysis that confirmed the sub-species identification and the clonality of the two SGP strains. The strains were found resistant to OT, SXT, MTZ and EN and susceptible to AMP, AMC, KZ and CN. We hypothesized that the syndrome observed could be due to the lack of maternal colostrum feeding. A timely and precise diagnosis could have likely prevented the death of the calves and, since the zoonotic potential of SBSECs members is known, accurate and rapid identification is required.
Collapse
Affiliation(s)
- Adriana Trotta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy.
| | - Alessio Sposato
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Mariarosaria Marinaro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Nicola Zizzo
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Giuseppe Passantino
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Sezione di Putignano, Contrada San Pietro Piturno, 70017, Putignano, BA, Italy
| | - Domenico Buonavoglia
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| |
Collapse
|