1
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
2
|
Lara-Moreno A, Vargas-Ordóñez A, Villaverde J, Madrid F, Carlier JD, Santos JL, Alonso E, Morillo E. Bacterial bioaugmentation for paracetamol removal from water and sewage sludge. Genomic approaches to elucidate biodegradation pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136128. [PMID: 39426148 DOI: 10.1016/j.jhazmat.2024.136128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Wastewater treatment plants (WWTPs) are recognized as significant contributors of paracetamol (APAP) into the environment due to their limited ability to degrade it. This study used a bioaugmentation strategy with Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 to achieve APAP biodegradation in solution in wide ranges of temperature (10-40 °C) and pH (5-9), reaching DT50 values < 1.5 h to degrade 500 mg L-1 APAP. Bacterial strains also mineralized APAP in solution (<30 %), but when forming consortia with Mycolicibacterium aubagnense HPB1.1, mineralization significantly increased (up to 74 % and 58 % for CSW01 +HPB1.1 and CSW02 +HPB1.1, respectively), decreasing DT50 values to only 1 and 9 days. Despite the complete degradation of APAP and its high mineralization, residual toxicity throughout the process was observed. Three APAP metabolites were identified (4-aminophenol, hydroquinone and trans-2-hexenoic acid) that quickly disappeared, but residual toxicity remained, indicating the presence of other non-detected intermediates. CSW01 and CSW02 degraded also 100 % APAP (50 mg kg-1) adsorbed on sewage sludge, with DT50 values of only 0.7 and 0.3 days, respectively, but < 15 % APAP was mineralized. A genome-based analysis of CSW01 and CSW02 revealed that amidases, deaminases, hydroxylases, and dioxygenases enzymes were involved in APAP biodegradation, and a possible metabolic pathway was proposed.
Collapse
Affiliation(s)
- A Lara-Moreno
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - A Vargas-Ordóñez
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - F Madrid
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain
| | - J D Carlier
- Centre of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Building 7, Faro 8005-139, Portugal
| | - J L Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Seville, Spain
| | - E Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Seville, Spain
| | - E Morillo
- Institute of Natural Resources and Agrobiology of Seville, Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Spanish National Research Council (IRNAS-CSIC), Seville, Spain.
| |
Collapse
|
3
|
Li T, Xu ZJ, Zhang ST, Xu J, Pan P, Zhou NY. Discovery of a Ni 2+-dependent heterohexameric metformin hydrolase. Nat Commun 2024; 15:6121. [PMID: 39033196 PMCID: PMC11271267 DOI: 10.1038/s41467-024-50409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The biguanide drug metformin is a first-line blood glucose-lowering medication for type 2 diabetes, leading to its presence in the global environment. However, little is known about the fate of metformin by microbial catabolism. Here, we characterize a Ni2+-dependent heterohexameric enzyme (MetCaCb) from the ureohydrolase superfamily, catalyzing the hydrolysis of metformin into guanylurea and dimethylamine. Either subunit alone is catalytically inactive, but together they work as an active enzyme highly specific for metformin. The crystal structure of the MetCaCb complex shows the coordination of the binuclear metal cluster only in MetCa, with MetCb as a protein binder of its active cognate. An in-silico search and functional assay discover a group of MetCaCb-like protein pairs exhibiting metformin hydrolase activity in the environment. Our findings not only establish the genetic and biochemical foundation for metformin catabolism but also provide additional insights into the adaption of the ancient enzymes toward newly occurred substrate.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhi-Jing Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Shu-Ting Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jia Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Piaopiao Pan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
4
|
Comanescu C, Racovita RC. An Overview of Degradation Strategies for Amitriptyline. Int J Mol Sci 2024; 25:3822. [PMID: 38612638 PMCID: PMC11012176 DOI: 10.3390/ijms25073822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Antidepressant drugs play a crucial role in the treatment of mental health disorders, but their efficacy and safety can be compromised by drug degradation. Recent reports point to several drugs found in concentrations ranging from the limit of detection (LOD) to hundreds of ng/L in wastewater plants around the globe; hence, antidepressants can be considered emerging pollutants with potential consequences for human health and wellbeing. Understanding and implementing effective degradation strategies are essential not only to ensure the stability and potency of these medications but also for their safe disposal in line with current environment remediation goals. This review provides an overview of degradation pathways for amitriptyline, a typical tricyclic antidepressant drug, by exploring chemical routes such as oxidation, hydrolysis, and photodegradation. Connex issues such as stability-enhancing approaches through formulation and packaging considerations, regulatory guidelines, and quality control measures are also briefly noted. Specific case studies of amitriptyline degradation pathways forecast the future perspectives and challenges in this field, helping researchers and pharmaceutical manufacturers to provide guidelines for the most effective degradation pathways employed for minimal environmental impact.
Collapse
Affiliation(s)
- Cezar Comanescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Romania
| | - Radu C. Racovita
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| |
Collapse
|
5
|
Suleiman M, Demaria F, Zimmardi C, Kolvenbach BA, Corvini PFX. Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12677-z. [PMID: 37436483 PMCID: PMC10390369 DOI: 10.1007/s00253-023-12677-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Pharmaceuticals are of concern to our planet and health as they can accumulate in the environment. The impact of these biologically active compounds on ecosystems is hard to predict, and information on their biodegradation is necessary to establish sound risk assessment. Microbial communities are promising candidates for the biodegradation of pharmaceuticals such as ibuprofen, but little is known yet about their degradation capacity of multiple micropollutants at higher concentrations (100 mg/L). In this work, microbial communities were cultivated in lab-scale membrane bioreactors (MBRs) exposed to increasing concentrations of a mixture of six micropollutants (ibuprofen, diclofenac, enalapril, caffeine, atenolol, paracetamol). Key players of biodegradation were identified using a combinatorial approach of 16S rRNA sequencing and analytics. Microbial community structure changed with increasing pharmaceutical intake (from 1 to 100 mg/L) and reached a steady-state during incubation for 7 weeks on 100 mg/L. HPLC analysis revealed a fluctuating but significant degradation (30-100%) of five pollutants (caffeine, paracetamol, ibuprofen, atenolol, enalapril) by an established and stable microbial community mainly composed of Achromobacter, Cupriavidus, Pseudomonas and Leucobacter. By using the microbial community from MBR1 as inoculum for further batch culture experiments on single micropollutants (400 mg/L substrate, respectively), different active microbial consortia were obtained for each single micropollutant. Microbial genera potentially responsible for degradation of the respective micropollutant were identified, i.e. Pseudomonas sp. and Sphingobacterium sp. for ibuprofen, caffeine and paracetamol, Sphingomonas sp. for atenolol and Klebsiella sp. for enalapril. Our study demonstrates the feasibility of cultivating stable microbial communities capable of degrading simultaneously a mixture of highly concentrated pharmaceuticals in lab-scale MBRs and the identification of microbial genera potentially responsible for the degradation of specific pollutants. KEY POINTS: • Multiple pharmaceuticals were removed by stable microbial communities. • Microbial key players of five main pharmaceuticals were identified.
Collapse
Affiliation(s)
- Marcel Suleiman
- Institute of Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| | - Francesca Demaria
- Institute of Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Cristina Zimmardi
- Institute of Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Boris Alexander Kolvenbach
- Institute of Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | | |
Collapse
|
6
|
Chopra S, Kumar D. Characterization and biodegradation of paracetamol by biomass of Bacillus licheniformis strain PPY-2 isolated from wastewater. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023; 34:491-501. [PMID: 36852133 PMCID: PMC9947448 DOI: 10.1007/s12210-023-01140-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023]
Abstract
Industrialization leads to the entry of diverse xenobiotic compounds into the environment. One such compound is paracetamol (APAP), which is emerging as a pharmaceutical and personal care pollutant (PPCP). In this study, the APAP degrading bacterium was isolated by enrichment culture method from the sewage sample. The microscopy, biochemical, and 16S rRNA gene sequence analyzed the isolate PPY-2, which belongs to Bacillus licheniformis, and GenBank assigned accession number MN744328. Physiological and batch culture degradation studies have indicated that the strain involved in the degradation of APAP. The optimum pH for degradation of the PPY-2 was 7.7, whereas the temperature was 25 °C, agitation speed was 142 rpm, and concentration of APAP was 621 mg/L reported, and the optimum temperatures were 42 °C and 32 °C, respectively. Biomass kinetic was studied at optimal physical conditions, which suggested that the specific growth rate (μ) was 721 mg/L. The GC-MS chromatogram peaks have detected metabolites, viz., oxalic acid, 2-isopropyl-5-methyl cyclohexanone, and phenothiazine. The study confirmed that Bacillus licheniformis strain PPY-2 exhibits metabolic potential to biodegradation APAP and can be further deployed in bioremediation.
Collapse
Affiliation(s)
- Sunil Chopra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, 131039 India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, 131039 India
| |
Collapse
|
7
|
Mixed Contaminants: Occurrence, Interactions, Toxicity, Detection, and Remediation. Molecules 2022; 27:molecules27082577. [PMID: 35458775 PMCID: PMC9029723 DOI: 10.3390/molecules27082577] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
The ever-increasing rate of pollution has attracted considerable interest in research. Several anthropogenic activities have diminished soil, air, and water quality and have led to complex chemical pollutants. This review aims to provide a clear idea about the latest and most prevalent pollutants such as heavy metals, PAHs, pesticides, hydrocarbons, and pharmaceuticals—their occurrence in various complex mixtures and how several environmental factors influence their interaction. The mechanism adopted by these contaminants to form the complex mixtures leading to the rise of a new class of contaminants, and thus resulting in severe threats to human health and the environment, has also been exhibited. Additionally, this review provides an in-depth idea of various in vivo, in vitro, and trending biomarkers used for risk assessment and identifies the occurrence of mixed contaminants even at very minute concentrations. Much importance has been given to remediation technologies to understand our current position in handling these contaminants and how the technologies can be improved. This paper aims to create awareness among readers about the most ubiquitous contaminants and how simple ways can be adopted to tackle the same.
Collapse
|