1
|
Lailaja VP, Hari V, Sumithra TG, Anusree VN, Suresh G, Sanil NK, Sharma S R K, Gopalakrishnan A. In vitro and in silico analysis unravelled clinically desirable attributes of Bacillus altitudinis L-asparaginase. J Appl Microbiol 2024; 135:lxae062. [PMID: 38467390 DOI: 10.1093/jambio/lxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
AIMS To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.
Collapse
Affiliation(s)
- V P Lailaja
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - Vishnu Hari
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - T G Sumithra
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - V N Anusree
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
- Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - N K Sanil
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - Krupesha Sharma S R
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute (CMFRI), Ernakulam Kochi 682018, Kerala, India
| |
Collapse
|