1
|
Chen H, Wang R, McElderry JD. Discriminative Dissolution Method Development Through an aQbD Approach. AAPS PharmSciTech 2023; 24:255. [PMID: 38066324 DOI: 10.1208/s12249-023-02692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Using a one-factor-at-a-time approach for dissolution method and discrimination analysis can be time-consuming and may not yield the optimal and discriminative method. To address this, we have developed a two-stage workflow for the dissolution method development followed by demonstration of discrimination power through an analytical Quality by Design (aQbD) approach. In the first stage, an optimal dissolution method was achieved by determining the method operable design region (MODR) through a design of experiment study of the high-risk method-related parameters. In the second stage, we established a Formulation-Discrimination Correlation Diagram strategy to examine the method discrimination capability, through which one can determine the method discriminative design region (MDDR) and visualize the impact of each formulation parameter and their interactions on dissolution. The application of aQbD principles into a workflow provides a scientific-driven guidance for robust method development and demonstrating discrimination power for dissolution methods.
Collapse
Affiliation(s)
- Hongbo Chen
- Analytical Development, Biogen Inc., Cambridge, Massachusetts, 02142, USA.
| | - Rui Wang
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | | |
Collapse
|
2
|
Blue LE, Guan X, Joubert MK, Kuhns ST, Moore S, Semin DJ, Wikström M, Wypych J, Goudar CT. State-of-the-art and emerging trends in analytical approaches to pharmaceutical-product commercialization. Curr Opin Biotechnol 2022; 78:102800. [PMID: 36182871 DOI: 10.1016/j.copbio.2022.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
The biopharmaceutical landscape continues to evolve rapidly, and associated modality complexity and the need to improve molecular understanding require concomitant advances in analytical approaches used to characterize and release the product. The Product Quality Attribute Assessment (PQAA) and Quality Target Product Profile (QTPP) frameworks help catalog and translate molecular understanding to process and product-design targets, thereby enabling reliable manufacturing of high-quality product. The analytical target profile forms the basis of identifying best-fit analytical methods for attribute measurement and continues to be successfully used to develop robust analytical methods for detailed product characterization as well as release and stability testing. Despite maturity across multiple testing platforms, advances continue to be made, several with the potential to alter testing paradigms. There is an increasing role for mass spectrometry beyond product characterization and into routine release testing as seen by the progress in multi-attribute methods and technologies, applications to aggregate measurement, the development of capillary zone electrophoresis (CZE) coupled with mass spectrometry (MS) and capillary isoelectric focusing (CIEF) with MS for measurement of glycans and charged species, respectively, and increased application to host cell protein measurement. Multitarget engaging multispecific modalities will drive advances in bioassay platforms and recent advances both in 1- and 2-D NMR approaches could make it the method of choice for characterizing higher-order structures. Additionally, rigorous understanding of raw material and container attributes is necessary to complement product understanding, and these collectively can enable robust supply of high-quality product to patients.
Collapse
Affiliation(s)
- Laura E Blue
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Xiaoyan Guan
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Marisa K Joubert
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Scott T Kuhns
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Stephanie Moore
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Mats Wikström
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Jette Wypych
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Chetan T Goudar
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
3
|
Gurba-Bryśkiewicz L, Dawid U, Smuga DA, Maruszak W, Delis M, Szymczak K, Stypik B, Moroz A, Błocka A, Mroczkiewicz M, Dubiel K, Wieczorek M. Implementation of QbD Approach to the Development of Chromatographic Methods for the Determination of Complete Impurity Profile of Substance on the Preclinical and Clinical Step of Drug Discovery Studies. Int J Mol Sci 2022; 23:ijms231810720. [PMID: 36142622 PMCID: PMC9505031 DOI: 10.3390/ijms231810720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work was to demonstrate the use of the AQbD with the DOE approach to the methodical step-by-step development of a UHPLC method for the quantitative determination of the impurity profile of new CPL409116 substance (JAK/ROCK inhibitor) on the preclinical and clinical step of drug discovery studies. The critical method parameters (CMPs) have been tested extensively: the kind of stationary phase (8 different columns), pH of the aqueous mobile phase (2.6, 3.2, 4.0, 6.8), and start (20–25%) and stop (85–90%) percentage of organic mobile phase (ACN). The critical method attributes (CMAs) are the resolution between the peaks (≥2.0) and peak symmetry of analytes (≥0.8 and ≤1.8). In the screening step, the effects of different levels of CMPs on the CMAs were evaluated based on a full fractional design 22. The robustness tests were established from the knowledge space of the screening step and performed by application fractional factorial design 2(4−1). Method operable design region (MODR) was generated. The probability of meeting the specifications for the CMAs was calculated by Monte-Carlo simulations. In relation to literature such a complete AQbD approach including screening, optimization, and validation steps for the development of a new method for the quantitative determination of the full profile of nine impurities of an innovative pharmaceutical substance with the structure-based pre-development pointed out the novelty of our work. The final working conditions were as follows: column Zorbax Eclipse Plus C18, aqueous mobile phase 10 mM ± 1 mM aqueous solution of HCOOH, pH 2.6, 20% ± 1% of ACN at the start and 85% ± 1% of ACN at the end of the gradient, and column temperature 30 °C ± 2 °C. The method was validated in compliance with ICH guideline Q2(R1). The optimized method is specified, linear, precise, and robust. LOQ is on the reporting threshold level of 0.05% and LOD at 0.02% for all impurities.
Collapse
|