1
|
Zu C, Yu Y, Yu C, Li Y, Sun R, Chaurasiya B, Tang B, Chen D, Tu J, Shen Y. Highly loaded deoxypodophyllotoxin nano-formulation delivered by methoxy polyethylene glycol-block-poly (D,L-lactide) micelles for efficient cancer therapy. Drug Deliv 2020; 27:248-257. [PMID: 32003255 PMCID: PMC7034029 DOI: 10.1080/10717544.2020.1716875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer is a kind of malignant diseases that threatens human health and the research application of anti-tumor drug therapeutics is growingly always been focused on. Many new compounds with great anticancer activity were synthesized but cannot be hard to be developed into clinical use due to its poor water solubility. Deoxypodophyllotoxin (DPT) is just an example. We develop lyophilized Deoxypodophyllotoxin (DPT) loaded polymeric micelles using methoxy polyethylene glycol-block-Poly (D, L-lactide) (mPEG-PLA). DPT-PM freeze-dried powder was successfully prepared using optimized formulation. mPEG-PLA was added to hydration media before hydrating as cryoprotectants. The freeze-dried powder exhibited white pie-solid without collapsing, and the particle size of DPT-PM reconstituted with water was about 20-35 nm. The entrapment efficiency of the reconstituted solution was 98%, which shows no differences with the micelles before lyophilization. In-vitro cytotoxicity and cellular uptake studies showed that DPT-PM has a higher degree of cytotoxicity comparing with DPT and mPEG-PLA micelles and uptake of mPEG-PLA was concentration and time-dependent. In vivo characterization of DPT-PM was done for pharmacokinetics behaviors, antitumor activity and safety. The obtained results showed significant improvement in plasma clearance bioavailability (p <0.05) and prolonged blood circulation time comparing with DPT-HP-β-CD. Moreover, mPEG-PLA micelles had a better degree of anti-tumor efficacy, this was due to better accumulation of mPEG-PLA in tumor cell via enhanced permeability and retention (EPR) effect. Therefore, DPT-PM has great clinical value, and can be expected to be a novel antitumor preparation.
Collapse
Affiliation(s)
- Chang Zu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yinglan Yu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Caiwei Yu
- School of Pharmacy, Yantai University, Yantai, China
| | - Yi Li
- School of Pharmacy, Yantai University, Yantai, China
| | - Runing Sun
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Birendra Chaurasiya
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Baoqiang Tang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, China
| | - Jiasheng Tu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Genova J, Chamati H, Petrov M. Study of SOPC with embedded pristine and amide-functionalized single wall carbon nanotubes by DSC and FTIR spectroscopy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Wu Z, Wang T, Song Y, Lu Y, Chen T, Chen P, Hui A, Chen Y, Wang H, Zhang W. Optimization on conditions of podophyllotoxin-loaded liposomes using response surface methodology and its activity on PC3 cells. J Liposome Res 2019; 29:133-141. [DOI: 10.1080/08982104.2018.1502303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Tingting Wang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yonghong Song
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Tianyun Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, PR China
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Pengpeng Chen
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Ailing Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Haixiang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| |
Collapse
|