1
|
Movilla-Meza NA, Sierra-Vega NO, Alvarado-Hernández BB, Méndez R, Romañach RJ. The Use of a Closed Feed Frame for the Development of Near-Infrared Spectroscopic Calibration Model to Determine Drug Concentration. Pharm Res 2023; 40:2903-2916. [PMID: 37700106 DOI: 10.1007/s11095-023-03601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE This study evaluates the use of the closed feed frame as a material sparing approach to develop near-infrared (NIR) spectroscopic calibration models for monitoring blend uniformity. The effect of shear induced by recirculation on NIR spectra was also studied. METHODS Calibration models were developed using NIR spectra obtained in the closed feed frame for two cases. For case 2, blends that flowed through the open feed frame were predicted with the model. The shear effect of the feed frame on the blends was assessed through the characterization of powder properties before and after recirculation. RESULTS The physical characterization of the blends confirmed that the powder properties were not altered after recirculation within the closed feed frame. Both calibration models provided highly accurate predictions of the test sets with low bias (0.03% w/w and -0.06% w/w) and relative standard error of prediction (1.9% and 3.7%), respectively. The predictive performance of the calibration models was not affected by the shear effect. CONCLUSION Recirculation within the closed feed frame did not change the physical properties of the blends studied. The prediction of blends flowing through the open feed frame was possible with a calibration model developed in the closed feed frame. The closed feed frame could reduce the materials needed to develop calibration models by more than 90%.
Collapse
Affiliation(s)
| | - Nobel O Sierra-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayagüez, Mayagüez, PR, USA
| | | | - Rafael Méndez
- Department of Chemical Engineering, University of Puerto Rico at Mayagüez, Mayagüez, PR, USA
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico at Mayagüez, Mayagüez, PR, USA.
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemistry, University of Puerto Rico at Mayagüez, PO Box 9000, Mayagüez, PR, 00681, USA.
| |
Collapse
|
2
|
Peeters M, Peeters E, Van Hauwermeiren D, Cogoni G, De Beer T. Effect of process parameters and formulation properties on the lead-lag between in-line NIR tablet press feed frame and off-line NIR tablet measurements. Eur J Pharm Biopharm 2023; 189:251-263. [PMID: 37356638 DOI: 10.1016/j.ejpb.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The use of in-line near-infrared (NIR) measurements for tablet potency monitoring and diversion was studied. First, the optimal sample size for in-line NIR measurements inside the feed chute and the dosing and filling chamber of the tablet press feed frame was determined to allow proper comparison between these different measurement positions. Because of the considerably longer measurement time needed to obtain the same sample size inside the feed chute compared to the feed frame, the possibility of powder segregation inside the feed chute and the additional powder mixing inside the feed frame, the latter is preferred over the feed chute for in-line blend potency monitoring. Next, a design of experiments (DoE) was performed to evaluate the effect of paddle speed, turret speed, overfill level and formulation properties upon the lead-lag and the time it takes before the powder blend that is expelled at the dosing station is measured by the NIR inside the dosing chamber. Lead-lag is defined as the difference in time and API concentration between the measured in-line NIR response inside the filling chamber of the feed frame and the off-line NIR tablet response. Paddle speed and turret speed were the only compression parameters affecting lead-lag. Lead-lag decreased with increasing paddle speed for the first formulation. For the second formulation, lead-lag decreased with decreasing paddle speed and/or increasing turret speed. Formulation properties did not have an effect on the lead-lag. The in-line NIR response inside the dosing chamber of the feed frame was found to be closely following the tablet NIR response. Therefore, the dosing chamber could be used as an additional in-line NIR position for tablet potency monitoring and diversion. It can provide an extra layer of confidence about the final tablet quality. To demonstrate this potential benefit of simultaneous in-line NIR measurements inside the filling and dosing chamber of the feed frame, a tableting experiment was performed where a surrogate API spike was introduced into the product stream to mimic a potential process disturbance. The in-line NIR measurements inside the filling chamber allow diverting tablets in-time when the blend potency crosses the predefined control limits. And because the NIR response inside the dosing chamber closely follows the tablet NIR response, tablet diversion can discontinue when the blend potency inside the dosing chamber is again within the control limits. This could increase the yield of the tableting process by avoiding a longer than needed wash-out period and rejecting tablets that meet the release limits.
Collapse
Affiliation(s)
- Michiel Peeters
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Elisabeth Peeters
- Pfizer Inc., Worldwide Research and Development, ARD, Eastern Point Road, Groton, CT 06340, USA
| | - Daan Van Hauwermeiren
- Ghent University, BIOMATH, Department of Data Analysis and Mathematical Modelling, Coupure Links 653, 9000 Ghent, Belgium
| | - Giuseppe Cogoni
- Pfizer Inc., Worldwide Research and Development, ARD, Eastern Point Road, Groton, CT 06340, USA
| | - Thomas De Beer
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Rangel-Gil RS, Sierra-Vega NO, Romañach RJ, Méndez R. Assessment of blend uniformity in a stream sampler device using Raman spectroscopy. Int J Pharm 2023; 639:122934. [PMID: 37061209 DOI: 10.1016/j.ijpharm.2023.122934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/06/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
This study describes the first implementation of Raman spectrometer in a stream sampler for the in-line monitoring of low drug concentration in poor flowability powder blends. Raman spectra were continuously acquired as the powder blends flowed through the stream sampler operating with a paddle wheel speed of 10 RPM and used to develop the calibration models. A calibration model was developed to quantify caffeine concentration from 1.50 to 4.50% w/w using Partial Least Squares Regression (PLS-R). Three test set blends were used to assess the prediction errors of the calibration model. Caffeine concentration was predicted for the test set blends with a root mean square error of prediction of 0.21% w/w and a low bias of -0.03% w/w. The calibration model showed good prediction performance with an estimated sample mass of 83 mg. Variographic analysis demonstrated the low process variance of the real-time spectral acquisition through minimum practical error and sill values. The results showed the ability of the Raman spectrometer coupled with the stream sampler to monitor low drug concentration for poor flowability blends.
Collapse
Affiliation(s)
- Raúl S Rangel-Gil
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico, 00681, United States
| | - Nobel O Sierra-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico, 00681, United States
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico at Mayaguez, Puerto Rico, 00681, United States
| | - Rafael Méndez
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico, 00681, United States.
| |
Collapse
|
4
|
Rosas JG, Brush P, Thompson B, Miller C, Overton P, Tugby N, Stoliarskaia D, Hurley S, Ramasamy M, Conway SL. Implementation of a fully integrated CM direct compression and coating process at a commercial pharmaceutical facility - Part 2: PAT and RTD results for normal operational conditions batches. Int J Pharm 2023; 636:122814. [PMID: 36918116 DOI: 10.1016/j.ijpharm.2023.122814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
This is the second of two articles detailing the continuous manufacturing (CM) development and implementation activities for an marketed product which have been realized in novel, qualified equipment, using validated control strategy elements to enable manufacture of batches under current good manufacturing practices (cGMP) and compliant with data integrity principles. Here, the application of process analytical technologies (PAT) and automation tools on batches produced under normal operational conditions is reviewed. The results from residence time distribution (RTD) models for predicting API concentration, in-line near infrared (NIR) testing of blend uniformity (BU) and at-line NIR spectroscopy analysis of core tablet concentration and tablet identity for real-time release testing (RTRT) are discussed. The influences of process equipment and design choices on NIR and RTD model variability, as well as the use of the PAT tools for monitoring the evolving properties understanding of CM process development, such as overcoming flow instabilities, is described. Results demonstrate that the RTD and NIR models developed and validated are robust to operating conditions and are critical for assuring steady state control of the continuous manufacturing process. Finally, the NIR and RTD model lifecycle, including procedures for necessary and normal model upgrades in a cGMP production environment, are presented.
Collapse
Affiliation(s)
- Juan G Rosas
- MSD, Pharmaceutical Technical Operations PAT, UK.
| | - Peter Brush
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | - Bruce Thompson
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | - Charles Miller
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | | | - Neil Tugby
- MSD, Pharmaceutical Technical Operations, UK
| | | | - Samantha Hurley
- Merck & Co. Inc, Pharmaceutical Commercialization Technology, United States
| | - Manoharan Ramasamy
- Merck & Co. Inc, Analytical Chemistry in Development and Supply PAT, United States
| | | |
Collapse
|
5
|
Influence of measurement procedure on the use of a handheld NIR spectrophotometer. Food Res Int 2022; 161:111836. [DOI: 10.1016/j.foodres.2022.111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/19/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022]
|
6
|
Velez NL, Drennen JK, Anderson CA. Challenges, opportunities and recent advances in near infrared spectroscopy applications for monitoring blend uniformity in the continuous manufacturing of solid oral dosage forms. Int J Pharm 2022; 615:121462. [PMID: 35026317 DOI: 10.1016/j.ijpharm.2022.121462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Near infrared (NIR) spectroscopy has been widely recognized as a powerful PAT tool for monitoring blend uniformity in continuous manufacturing (CM) processes. However, the dynamic nature of the powder stream and the fast rate at which it moves, compared to batch processes, introduces challenges to NIR quantitative methods for monitoring blend uniformity. For instance, defining the effective sample size interrogated by NIR, selecting the best sampling location for blend monitoring, and ensuring NIR model robustness against influential sources of variability are challenges commonly reported for NIR applications in CM. This article reviews the NIR applications for powder blend monitoring in the continuous manufacturing of solid oral dosage forms, with a particular focus on the challenges, opportunities for method optimization and recent advances with respect three main aspects: effective sample size measured by NIR, probe location and method robustness.
Collapse
Affiliation(s)
- Natasha L Velez
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
7
|
Sánchez-Paternina A, Martínez-Cartagena P, Li J, Scicolone J, Singh R, Lugo YC, Romañach RJ, Muzzio FJ, Román-Ospino AD. Residence time distribution as a traceability method for lot changes in a pharmaceutical continuous manufacturing system. Int J Pharm 2022; 611:121313. [PMID: 34822965 DOI: 10.1016/j.ijpharm.2021.121313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Residence time distribution (RTD) models were developed to track raw material lots and investigate batch transitions in a continuous manufacturing system. Two raw materials with similar physical properties (granular metformin and lactose) were identified via Principal Component Analysis (PCA) from a library of bulk material properties and used to simulate the switching of lots during production. In-line near-infrared (NIR) spectra were collected with the powder flowing through a chute in a continuous manufacturing system to monitor metformin and lactose concentration in step-change experiments with Partial Least Squares (PLS) models. RTD provided an understanding of raw material propagation through the continuous manufacturing system. Transition times between raw material changes were identified using the results of two multivariate approaches PLS and PCA. The methodology was implemented to discriminate the transition zone in a raw material change, contributing to design control strategies for acceptance and diverting mechanisms.
Collapse
Affiliation(s)
- Adriluz Sánchez-Paternina
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemistry, University of Puerto Rico Mayaguez Campus, PO Box 9000, Mayaguez, PR 00681, Puerto Rico
| | - Pedro Martínez-Cartagena
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemistry, University of Puerto Rico Mayaguez Campus, PO Box 9000, Mayaguez, PR 00681, Puerto Rico
| | - Jingzhe Li
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James Scicolone
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ravendra Singh
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yleana C Lugo
- Janssen Supply Chain, Johnson & Johnson, Gurabo, Puerto Rico
| | - Rodolfo J Romañach
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemistry, University of Puerto Rico Mayaguez Campus, PO Box 9000, Mayaguez, PR 00681, Puerto Rico
| | - Fernando J Muzzio
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Andrés D Román-Ospino
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
8
|
De la Rosa MVG, Báez JPF, Romañach RJ, López-Mejías V, Stelzer T. Real-time concentration monitoring using a compact composite sensor array for in situ quality control of aqueous formulations. J Pharm Biomed Anal 2021; 206:114386. [PMID: 34607202 DOI: 10.1016/j.jpba.2021.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022]
Abstract
Recent advancements have demonstrated the feasibility of refrigerator-sized pharmaceutical manufacturing platforms (PMPs) for integrated end-to-end manufacturing of active pharmaceutical ingredients (APIs) into formulated drug products. Unlike typical laboratory- or industrial-scale setups, PMPs present unique requirements for process analytical technology (PAT) with respect to versatility, flexibility, and physical size to fit into the PMP space constraints. In this proof of principle study, a novel compact composite sensor array (CCSA) combining ultraviolet (UV) and near infrared (NIR) features at four different wavelengths (280, 340, 600, 860 nm) with temperature measuring capability in a 380 × 30 mm housing (length x diameter, 7 mm diameter at the probe head), were evaluated. The results indicate that the CCSA prototype is capable of measuring the solution and suspension concentrations in aqueous formulations of four model APIs (warfarin sodium isopropanol solvate, lidocaine hydrochloride monohydrate, 6-mercaptopurine monohydrate, acetaminophen) in situ and in real-time with similar accuracy as an established Raman spectrometer commonly applied for method development.
Collapse
Affiliation(s)
- Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Jean P Feng Báez
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus,. Mayagüez, PR, 00681, USA
| | - Vilmalí López-Mejías
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA; Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR 00931, USA.
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
| |
Collapse
|
9
|
Román-Ospino AD, Baranwal Y, Li J, Vargas J, Igne B, Bate S, Brouckaert D, Chauchard F, Hausner D, Ramachandran R, Singh R, Muzzio FJ. Sampling optimization for blend monitoring of a low dose formulation in a tablet press feed frame using spatially resolved near-infrared spectroscopy. Int J Pharm 2021; 602:120594. [PMID: 33857586 DOI: 10.1016/j.ijpharm.2021.120594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
In-line measurements of low dose blends in the feed frame of a tablet press were performed for API concentration levels as low as 0.10% w/w. The proposed methodology utilizes the advanced sampling capabilities of a Spatially Resolved Near-Infrared (SR-NIR) probe to develop Partial Least-Squares calibration models. The fast acquisition speed of multipoint spectra allowed the evaluation of different numbers of co-adds and feed frame paddle speeds to establish the optimum conditions of data collection to predict low potency blends. The interaction of the feed frame paddles with the SR-NIR probe was captured with high resolution and allowed the implementation of a spectral data selection criterion to remove the effect of the paddles from the calibration and testing process. The method demonstrated accuracy and robustness when predicting drug concentrations across different feed frame paddle speeds.
Collapse
Affiliation(s)
- Andrés D Román-Ospino
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Yukteshwar Baranwal
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Jingzhe Li
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Jenny Vargas
- GlaxoSmithKline (GSK), Collegeville, PA 19426, United States
| | - Benoît Igne
- GlaxoSmithKline (GSK), Collegeville, PA 19426, United States
| | - Simon Bate
- GlaxoSmithKline (GSK), Collegeville, PA 19426, United States
| | | | | | - Douglas Hausner
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Rohit Ramachandran
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Ravendra Singh
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Fernando J Muzzio
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
10
|
Panikar S, Li J, Rane V, Gillam S, Callegari G, Kurtyka B, Lee S, Muzzio F. Integrating sensors for monitoring blend content in a pharmaceutical continuous manufacturing plant. Int J Pharm 2021; 606:120085. [PMID: 33737095 DOI: 10.1016/j.ijpharm.2020.120085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/14/2020] [Accepted: 11/08/2020] [Indexed: 10/21/2022]
Abstract
In a pharmaceutical manufacturing process, Critical Quality Attributes (CQAs) need to be monitored not only for the final product but also for intermediates. Blend uniformity of powders is one such attribute that needs to be measured to ensure the quality of the final product. Multiple in-line sensors were implemented within a Direct Compaction (DC) continuous tablet manufacturing line to monitor the blend content of the powders. In most cases, since the primary ingredient of interest is the active pharmaceutical ingredient (API), the concentration (potency) of the API was monitored/predicted over the course of manufacturing. For the calibration model building process, a unique setup involving dynamic powder spectral acquisition method was used. This setup was aimed at mimicking the powder flow characteristics within the manufacturing line, while at the same time utilizing a relatively small amount of powder. A Raman probe and a portable NIR were used concurrently at the exit of the blending process before the tableting stage. The performance of the two sensors and their respective models were evaluated in terms of accuracy, precision, operating range, measurement frequency, placement, reliability, robustness, and compared to predictions using gravimetric feed rates. Additionally, their performances were validated by off-line traditional analytical measurements.
Collapse
Affiliation(s)
- Savitha Panikar
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States
| | - Jingzhe Li
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States
| | - Varsha Rane
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States
| | - Sean Gillam
- Kaiser Optical Systems, Inc., Ann Arbor, MI 48103, United States
| | - Gerardo Callegari
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States
| | - Bogdan Kurtyka
- Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Sau Lee
- Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Fernando Muzzio
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, 08854 NJ, United States.
| |
Collapse
|
11
|
Martínez-Cartagena PA, Sierra-Vega NO, Alvarado-Hernández BB, Méndez R, Romañach RJ. An innovative sampling interface for monitoring flowing pharmaceutical powder mixtures. J Pharm Biomed Anal 2020; 194:113785. [PMID: 33280992 DOI: 10.1016/j.jpba.2020.113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
A chute was designed following the principles of the Theory of Sampling to minimize the variations in powder flow and provide all particles in the flowing blends with the same opportunity of being selected as a sample. The design also reduces the thickness of the chute to allow the analysis of a higher portion of the flowing blends by a near infrared spectrometer. The blends that flowed through the chute had Carr's index values that fluctuated between 23 and 25 percent, indicating passable flowability. A powder fowling evaluation demonstrated that there was no powder accumulation at the inspection window of the chute. The mass flow rate profiles indicated that the system achieves mass steady-state in approximately 30 s and a throughput of 30 kg/h which makes it suitable for continuous manufacturing operations. An in-line NIR calibration model was developed to quantify caffeine concentrations between 1.51 and 4.52 % w/w. The spectra obtained from each experiment had minimal baseline variation. The developed NIR method was robust to throughput changes up to approximately ±7 %. The test blends in the caffeine concentration range between 2.02 % w/w and 4.02 % w/w met the dose uniformity requirements of the Ph.Eur. 9.0, chapter 2.9.47. Variographic analysis was done to estimate the analytical and sampling errors which yielded values below 0.01 (%w/w)2. The obtained results showed that this chute could also be used in a continuous manufacturing line or other applications with flowing powders.
Collapse
Affiliation(s)
- Pedro A Martínez-Cartagena
- Department of Chemistry, University of Puerto Rico at Mayaguez Call Box 9000, Mayaguez, 00680, Puerto Rico
| | - Nobel O Sierra-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico
| | | | - Rafael Méndez
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico at Mayaguez Call Box 9000, Mayaguez, 00680, Puerto Rico.
| |
Collapse
|
12
|
Pedersen T, Karttunen AP, Korhonen O, Wu JX, Naelapää K, Skibsted E, Rantanen J. Determination of Residence Time Distribution in a Continuous Powder Mixing Process With Supervised and Unsupervised Modeling of In-line Near Infrared (NIR) Spectroscopic Data. J Pharm Sci 2020; 110:1259-1269. [PMID: 33217424 DOI: 10.1016/j.xphs.2020.10.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022]
Abstract
Successful implementation of continuous manufacturing processes requires robust methods to assess and control product quality in a real-time mode. In this study, the residence time distribution of a continuous powder mixing process was investigated via pulse tracer experiments using near infrared spectroscopy for tracer detection in an in-line mode. The residence time distribution was modeled by applying the continuous stirred tank reactor in series model for achieving the tracer (paracetamol) concentration profiles. Partial least squares discriminant analysis and principal component analysis of the near infrared spectroscopy data were applied to investigate both supervised and unsupervised chemometric modeling approaches. Additionally, the mean residence time for three powder systems was measured with different process settings. It was found that a significant change in the mean residence time occurred when comparing powder systems with different flowability and mixing process settings. This study also confirmed that the partial least squares discriminant analysis applied as a supervised chemometric model enabled an efficient and fast estimate of the mean residence time based on pulse tracer experiments.
Collapse
Affiliation(s)
- Troels Pedersen
- University of Copenhagen, Copenhagen, Denmark; Novo Nordisk A/S, Måløv, Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Tanimura S, Singh R, Román-Ospino AD, Ierapetritou M. Residence time distribution modelling and in line monitoring of drug concentration in a tablet press feed frame containing dead zones. Int J Pharm 2020; 592:120048. [PMID: 33161037 DOI: 10.1016/j.ijpharm.2020.120048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 01/08/2023]
Abstract
The presence of a 'significant dead zone' in any continuous manufacturing equipment may affect the product quality and need to be investigated systematically. Dead zone will affect the residence time distribution (RTD) of continuous manufacturing and thus the mixing and product quality. Tablet press (feed frame) is one of unit operations that directly influence the critical quality attributes (CQA's). However, currently no systematic methods and tools are available to characterize and model the feed frame dead zone. In this manuscript, the RTD of the tablet press feed frame containing dead zone is investigated. Step-change experiments revealed that the feed frame could be expressed as a traditional continuous stirred tank model. The volume fractions of the dead zones are determined experimentally as well as using RTD model. In addition, an in-line NIR method for drug concentration monitoring inside the feed frame is also developed. The developed NIR calibration model enables to monitor the drug concentration precisely and detect the variation immediately with the probe positioned right above the left paddle. It is also found that the feed frame paddle speed slightly affects the predictive accuracy of NIR, while the die disc speed has no significant effect.
Collapse
Affiliation(s)
- Shinji Tanimura
- CMC R&D Center, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731 Japan
| | - Ravendra Singh
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Andrés D Román-Ospino
- Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE 19716, USA.
| |
Collapse
|
14
|
Sierra-Vega NO, Romañach RJ, Méndez R. Real-time quantification of low-dose cohesive formulations within a sampling interface for flowing powders. Int J Pharm 2020; 588:119726. [DOI: 10.1016/j.ijpharm.2020.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/27/2022]
|
15
|
Ono T, Yonemochi E. Evaluation of the physical properties of dry surface-modified ibuprofen using a powder rheometer (FT4) and analysis of the influence of pharmaceutical additives on improvement of the powder flowability. Int J Pharm 2020; 579:119165. [PMID: 32081804 DOI: 10.1016/j.ijpharm.2020.119165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022]
Abstract
In this study, we examined the characteristics of glidant that affect the improvement of the flowability of APIs by using the dry surface modification of ibuprofen. In addition, the screening method of glidant suitable for improving flowability of APIs was examined. As a result of evaluation of mixed powder with surface modification using various inorganic fine particles with different physical properties, it became clear that the packing fraction had the most influence regardless of the component. This was thought to able to coat the surface with small quantities because the smaller the packing fraction, the more it was able to dispersed from the less contacts between the glidant particles. The packing fraction of glidant was correlated with the (SE/CBD)-1 which was calculated value from the results measured with powder rheometer. From this results, when using any excipient as a glidant for dry surface modification, it is now possible to estimate the effect of improving flowability simply by measuring with a powder rheometer. Based on this study, it is possible to select excipients suitable for improving APIs flowability and to estimate the improvement effect, and therefore, it is expected to improve the efficiency of prescription design work.
Collapse
Affiliation(s)
- Tetsuo Ono
- Research & Development Headquarters Self-Medication, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshinocho, Kita-ku, Saitama 331-9530, Japan.
| | - Etsuo Yonemochi
- Department of Physical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501 Japan.
| |
Collapse
|
16
|
Alvarado-Hernández BB, Sierra-Vega NO, Martínez-Cartagena P, Hormaza M, Méndez R, Romañach RJ. A sampling system for flowing powders based on the theory of sampling. Int J Pharm 2019; 574:118874. [PMID: 31837408 DOI: 10.1016/j.ijpharm.2019.118874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022]
Abstract
An innovative chute and stream sampler system for flowing powders has been developed and tested. The system is designed for representative sampling based on the principles of the Theory of Sampling (TOS). The sampling system was used in combination with near infrared (NIR) spectroscopy to determine the drug concentration of flowing powders. The system is comprised of three parts: a chute, a stream sampler and a sample collection port. The NIR spectra were obtained at the chute, before entering the sampler, and as the powder flowed through the stream sampler. Samples were also collected from the sample collection port to be analyzed using an ultraviolet-visible (UV-Vis) reference method to determine drug content. A total of eight pharmaceutical powder blends, ranging in concentration from 10.5(%w/w) to 19.5(%w/w) of caffeine, were used to test the sampling system. Materials were characterized before blends were made to provide information on flow properties. The throughput of the system was between 30 and 35 kg/h based on the flow properties of the blend. Drug concentration was effectively determined at the chute and stream sampler. The NIR calibration models showed low root mean squared errors of prediction, 0.65(%w/w) and 0.51(%w/w), for the chute and stream sampler respectively. The NIR calibration models also showed low bias values -0.36(%w/w) at the chute and 0.057(%w/w) at the stream sampler. Significant agreement was obtained between the results from the nondestructive NIR versus the destructive UV-Vis method. Variographic analysis was performed to estimate the analytical and sampling errors when determining the drug concentration at the chute and stream sampler respectively. The variographic analysis showed low analytical errors, 0.103(%w/w)2 and 0.181(%w/w)2 at the chute and stream sampler respectively. The analysis also showed that the minimum practical error (MPE) was around 0.2(%w/w)2 at both chute and stream sampler.
Collapse
Affiliation(s)
| | - Nobel O Sierra-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico
| | - Pedro Martínez-Cartagena
- Department of Chemistry, University of Puerto Rico at Mayaguez, Call Box 9000, Mayaguez 00680, Puerto Rico
| | - Manuel Hormaza
- IBS Caribe INC., P.O. Box 8849, San Juan PR 00910, Puerto Rico
| | - Rafael Méndez
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Puerto Rico
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico at Mayaguez, Call Box 9000, Mayaguez 00680, Puerto Rico.
| |
Collapse
|
17
|
Characterization of NIR interfaces for the feeding and in-line monitoring of a continuous granulation process. Int J Pharm 2019; 574:118848. [PMID: 31812798 DOI: 10.1016/j.ijpharm.2019.118848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/23/2022]
Abstract
This work describes the characterization of three NIR interfaces intended to monitor a continuous granulation process. Two interfaces (i.e. a barrel interface and a rotating paddle interface) were evaluated to monitor the API concentration at the entrance of the granulator, and a third interface (i.e. an outlet interface), was evaluated to examine the quality of the resulting outlet granules. The barrel interface provided an assessment of the API concentration during the feeding process by scanning the material conveyed by the screws of the loss-in-weight feeder. The rotating paddle interface analyzed discrete amounts of powder upon exiting the feeder via the accumulation of material on the paddles. Partial Least Squares (PLS) calibration models were developed using the same powder blends for the two inlet interfaces and using the outlet granules for the outlet interface. Five independent batches were used to evaluate the prediction performance of each inlet calibration model. The outlet interface produced the lowest error of prediction due to the homogeneity of the granules. The barrel interface produced lower errors of prediction than the rotating paddle interface. However, powder density affected only the barrel interface, producing deviations in the predicted values. Therefore, powder density is a factor that should be considered in the calibration sample design for spectroscopic measurements when using this type of interface. A variographic analysis demonstrated that the continuous 1-dimensional motion in the barrel and outlet interfaces produced representative measurements of each batch during calibration and test experiments, generating a low minimum practical error (MPE).
Collapse
|
18
|
Sierra-Vega NO, Romañach RJ, Méndez R. Feed frame: The last processing step before the tablet compaction in pharmaceutical manufacturing. Int J Pharm 2019; 572:118728. [PMID: 31682965 DOI: 10.1016/j.ijpharm.2019.118728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
The feed frame is a force-feeding device used in the die filling process. The die filling process is crucial within pharmaceutical manufacturing to guarantee the critical quality attributes of the tablets. In recent years, interest in this unit has increased because it can affect the properties of the powder blend and tablets, and because of the success in real time monitoring of powder blend uniformity potential for Process Analytical Technology as described in this review. The review focuses on the recent advances in understanding the powder flow behavior inside the feed frame and how the residence time distribution of the powder within the feed frame is affected by the operating conditions and design parameters. Furthermore, this review also highlights the effect of the paddle wheel design and feed frame process parameters on the tablet weight, the principal variable for measuring die filling performance.
Collapse
Affiliation(s)
- Nobel O Sierra-Vega
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, PR 00681, United States
| | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico at Mayaguez, PR 00681 United States
| | - Rafael Méndez
- Department of Chemical Engineering, University of Puerto Rico at Mayaguez, PR 00681, United States.
| |
Collapse
|
19
|
Li Y, Anderson CA, Drennen JK, Airiau C, Igne B. Development of an In-Line Near-Infrared Method for Blend Content Uniformity Assessment in a Tablet Feed Frame. APPLIED SPECTROSCOPY 2019; 73:1028-1040. [PMID: 30990067 DOI: 10.1177/0003702819842189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Process analytical technology (PAT) has shown great potential for in-line tableting process monitoring. The study focuses on the development and validation of an in-line near-infrared (NIR) spectroscopic method for the determination of content uniformity of blends in a tablet feed frame. An in-line NIR method was developed after careful evaluation of the impact of potential experimental factors on the robustness and model accuracy and precision. The NIR method was validated according to the principles outlined in International Conference on Harmonization-Q2 for validation of analytical procedures and was demonstrated to be suitable for monitoring blend content for the formulation under evaluation. Reliable measurements of blend homogeneity rely on representative sampling. To reach the appropriate scale of scrutiny for a unit dose, the study assessed factors that influence the effective sample size measured by NIR. Spectral averaging, integration time, and feed frame paddle wheel speed were found to influence the effective sample size measured by the NIR probe. The effective sampling size was also estimated by comparing the distribution of predicted values with the reference values. The development of a robust, in-line PAT method was facilitated by thorough understanding of the sensitivity of PAT sensors to factors affecting pharmaceutical processes and products.
Collapse
Affiliation(s)
- Yi Li
- Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Carl A Anderson
- Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - James K Drennen
- Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Christian Airiau
- GlaxoSmithKline, Analytical Sciences and Development, Collegeville, PA, USA
| | - Benoît Igne
- GlaxoSmithKline, Analytical Sciences and Development, Collegeville, PA, USA
| |
Collapse
|
20
|
Razuc M, Grafia A, Gallo L, Ramírez-Rigo MV, Romañach RJ. Near-infrared spectroscopic applications in pharmaceutical particle technology. Drug Dev Ind Pharm 2019; 45:1565-1589. [DOI: 10.1080/03639045.2019.1641510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M. Razuc
- Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - A. Grafia
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS)- CONICET, Bahía Blanca, Argentina
| | - L. Gallo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS)- CONICET, Bahía Blanca, Argentina
| | - M. V. Ramírez-Rigo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur (UNS)- CONICET, Bahía Blanca, Argentina
| | - R. J. Romañach
- Department of Chemistry, Center for Structured Organic Particulate Systems, University of Puerto Rico – Mayagüez, Mayagüez, Puerto Rico
| |
Collapse
|
21
|
Variographic analysis: A new methodology for quality assurance of pharmaceutical blending processes. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2019.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Sierra-Vega NO, Román-Ospino A, Scicolone J, Muzzio FJ, Romañach RJ, Méndez R. Assessment of blend uniformity in a continuous tablet manufacturing process. Int J Pharm 2019; 560:322-333. [PMID: 30763679 DOI: 10.1016/j.ijpharm.2019.01.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
Blend uniformity was monitored throughout a continuous manufacturing (CM) process by near infrared (NIR) spectroscopic measurements of flowing blends and compared to the drug concentration in the tablets. The NIR spectra were obtained through the chute after the blender and within the feed frame, while transmission spectra were obtained for the tablets. The CM process was performed with semi-fine acetaminophen blends at 10.0% (w/w). The blender was operated at 250 RPM, for best performance, and 106 and 495 rpm where a lower mixing efficiency was expected. The variation in blender RPM increased the variation in drug concentration at the chute but not at the feed frame. Statistical results show that the drug concentration of tablets can be predicted, with great accuracy, from blends within the feed frame. This study demonstrated a mixing effect within the feed frame, which contribute to a 60% decrease in the relative standard deviation of the drug concentration, when compared to the chute. Variographic analysis showed that the minimum sampling and analytical error was five times less in the feed frame than the chute. This study demonstrates that the feed frame is an ideal location for monitoring the drug concentration of powder blends for CM processes.
Collapse
Affiliation(s)
- Nobel O Sierra-Vega
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical Engineering, University of Puerto Rico at Mayaguez, PR 00681, United States
| | - Andrés Román-Ospino
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers University, New Jersey, Piscataway 08854, United States
| | - James Scicolone
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers University, New Jersey, Piscataway 08854, United States
| | - Fernando J Muzzio
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical and Biochemical Engineering, Rutgers University, New Jersey, Piscataway 08854, United States
| | - Rodolfo J Romañach
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemistry, University of Puerto Rico at Mayaguez, PR 00681, United States
| | - Rafael Méndez
- Center for Structured Organic Particulate Systems (C-SOPS), Department of Chemical Engineering, University of Puerto Rico at Mayaguez, PR 00681, United States.
| |
Collapse
|
23
|
Process analytical technology in continuous manufacturing of a commercial pharmaceutical product. Int J Pharm 2018; 538:167-178. [DOI: 10.1016/j.ijpharm.2018.01.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/17/2017] [Accepted: 01/01/2018] [Indexed: 11/18/2022]
|