1
|
Jolliffe HG, Prostredny M, Mendez Torrecillas C, Bordos E, Tierney C, Ojo E, Elkes R, Reynolds G, Li Song Y, Meir B, Fathollahi S, Robertson J. A modified Kushner-Moore approach to characterising small-scale blender performance impact on tablet compaction. Int J Pharm 2024; 659:124232. [PMID: 38759740 DOI: 10.1016/j.ijpharm.2024.124232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Continuous Direct Compaction (CDC) has emerged as a promising route towards producing solid dosage forms while reducing material, development time and energy consumption. Understanding the response of powder processing unit operations, especially blenders, is crucial. There is a substantial body of work around how lubrication via batch blender operation affects tablet critical quality attributes such as hardness and tensile strength. But, aside from being batch operations, the design of these blenders is such that they operate with low-shear, low-intensity mixing at Froude number values significantly below 0.4 (Froude number Fr being the dimensionless ratio of inertial to gravitational forces). The present work explores the performance of a mini-blender which has a fundamentally different mode of operation (static vessel with rotating blades around a mixing shaft as opposed to rotating vessel with no mixing shaft). This difference allows a substantially wider operating range in terms of speed and shear (and Fr values). The present work evaluates how its performance compares to other blenders studied in the literature. Tablet compaction data from blends produced at various intensities and regimes of mixing in the mini-blender follow a common trajectory. Model equations from literature are suitably modified by inclusion of the Froude number Fr, but only for situations where the Froude number was sufficiently high (1 < Fr). The results suggest that although a similar lubrication extent plateau is eventually reached it is the intensity of mixing (i.e. captured using the Froude number as a surrogate) which is important for the lubrication dynamics in the mini-blender, next to the number of revolutions. The degree of fill or headspace, on the other hand, is only crucial to the performance of common batch blenders. Testing using alternative formulations shows the same common trend across mixing intensities, suggesting the validity of the approach to capture lubrication dynamics for this system.
Collapse
Affiliation(s)
- Hikaru G Jolliffe
- CMAC, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Martin Prostredny
- CMAC, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | | | - Ecaterina Bordos
- CMAC, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Collette Tierney
- CMAC, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Ebenezer Ojo
- CMAC, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Richard Elkes
- GSK Ware R&D, Harris's Lane, Ware, Hertfordshire SG12 0GX, UK
| | - Gavin Reynolds
- Oral Product Development, PT&D, Operations, AstraZeneca UK Limited, Charter Way, Macclesfield SK10 2NA, UK
| | - Yunfei Li Song
- GSK Ware R&D, Harris's Lane, Ware, Hertfordshire SG12 0GX, UK
| | - Bernhard Meir
- Gericke AG, Althardstrasse 120, CH-8105 Regensdorf, Switzerland
| | - Sara Fathollahi
- DFE Pharma GmbH & Co. KG, Kleverstrasse 187, 47568 Goch, Germany
| | - John Robertson
- CMAC, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK.
| |
Collapse
|
2
|
Waněk A, Menarini L, Giatti F, Kubelka T, Consoli F, Funaro C, Stasiak P, Štěpánek F. Manufacturing process transfer to a 30 kg/h continuous direct compression line with real-time composition monitoring. Int J Pharm 2024; 656:124100. [PMID: 38609059 DOI: 10.1016/j.ijpharm.2024.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Transferring an existing marketed pharmaceutical product from batch to continuous manufacturing (CM) without changes in regulatory registration is a challenging task in the pharmaceutical industry. Continuous manufacturing can provide an increased production rate and better equipment utilisation while retaining key quality attributes of the final product. Continuous manufacturing necessitates the monitoring of critical quality attributes in real time by appropriate process analytical tools such as near infra-red (NIR) probes. The present work reports a successful transfer of an existing drug product from batch to continuous manufacturing process without changing the formulation. A key step was continuous powder blending, whose design and operating parameters including weir type, agitation rate, dynamic hold-up and residence time were systematically investigated with respect to process repeatability. A NIR-based multivariate data model for in-line composition monitoring has been developed and validated against an existing quality control method for measuring tablet content uniformity. A continuous manufacturing long-run with a throughput of 30 kg/h (approx. 128,000 tablets per hour), uninterrupted for 320 min, has been performed to test and validate the multivariate data model as well as the batch to continuous process transfer. The final disintegration and dissolution properties of tablets manufactured by the continuous process were found to be equivalent to those manufactured by the original batch process.
Collapse
Affiliation(s)
- Adam Waněk
- Zentiva, k.s., U Kabelovny 130, Prague 10, Czech Republic; Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, Prague 6, Czech Republic
| | | | | | - Tomáš Kubelka
- Zentiva, k.s., U Kabelovny 130, Prague 10, Czech Republic
| | | | | | - Pawel Stasiak
- Zentiva, k.s., U Kabelovny 130, Prague 10, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, Prague 6, Czech Republic.
| |
Collapse
|
3
|
Velez-Silva NL, Drennen JK, Anderson CA. Continuous manufacturing of pharmaceutical products: A density-insensitive near infrared method for the in-line monitoring of continuous powder streams. Int J Pharm 2024; 650:123699. [PMID: 38081558 DOI: 10.1016/j.ijpharm.2023.123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Near infrared (NIR) spectroscopy is a valuable analytical technique for monitoring chemical composition of powder blends in continuous pharmaceutical processes. However, the variation in density captured by NIR during spectral collection of dynamic powder streams at different flow rates often reduces the performance and robustness of NIR models. To overcome this challenge, quantitative NIR measurements are commonly collected across all potential manufacturing conditions, including multiple flow rates to account for the physical variations. The utility of this approach is limited by the considerable quantity of resources required to run and analyze an extensive calibration design at variable flow rates in a continuous manufacturing (CM) process. It is hypothesized that the primary variation introduced to NIR spectra from changing flow rates is a change in the density of the powder from which NIR spectra are collected. In this work, powder stream density was used as an efficient surrogate for flow rate in developing a quantitative NIR method with enhanced robustness against process rate variation. A density design space of two process parameters was generated to determine the conditions required to encompass the apparent density and spectral variance from increases in process rate. This apparent density variance was included in calibration at a constant low flow rate to enable the development of a density-insensitive NIR quantitative model with limited consumption of materials. The density-insensitive NIR model demonstrated comparable prediction performance and flow rate robustness to a traditional NIR model including flow rate variation ("gold standard" model) when applied to monitoring drug content in continuous runs at varying flow rates. The proposed platform for the development of in-line density-insensitive NIR methods is expected to facilitate robust analytical model performance across variable continuous manufacturing production scales while improving the material efficiency over traditional robust modeling approaches for calibration development.
Collapse
Affiliation(s)
- Natasha L Velez-Silva
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
4
|
Lyytikäinen J, Kyllönen S, Ervasti T, Komulainen E, Pekarek T, Slunečková J, Leskinen J, Ketolainen J, Kubelka T, Stasiak P, Korhonen O. Challenges encountered in the transfer of atorvastatin tablet manufacturing - commercial batch-based production as a basis for small-scale continuous tablet manufacturing tests. Int J Pharm 2023; 647:123509. [PMID: 37832703 DOI: 10.1016/j.ijpharm.2023.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
As is the case with batch-based tableting processes, continuous tablet manufacturing can be conducted by direct compression or with a granulation step such as dry or wet granulation included in the production procedure. In this work, continuous manufacturing tests were performed with a commercial tablet formulation, while maintaining its original material composition. Challenges were encountered with the feeding performance of the API during initial tests which required designing different powder pre-blend compositions. After the pre-blend optimization phase, granules were prepared with a roller compactor. Tableting was conducted with the granules and an additional brief continuous direct compression run was completed with some ungranulated mixture. The tablets were assessed with off-line tests, applying the quality requirements demanded for the batch-manufactured product. Chemical maps were obtained by Raman mapping and elemental maps by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Large variations in both tablet weights and breaking forces were observed in all tested samples, resulting in significant quality complications. It was suspected that the API tended to adhere to the process equipment, accounting for the low API content in the powder mixture and tablets. These results suggest that this API or the tablet composition was unsuitable for manufacturing in a continuous line; further testing could be continued with different materials and changes in the process.
Collapse
Affiliation(s)
- Jenna Lyytikäinen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | - Saini Kyllönen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | - Tuomas Ervasti
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | - Eelis Komulainen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | | | | | - Jari Leskinen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Jarkko Ketolainen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| | | | | | - Ossi Korhonen
- School of Pharmacy, PromisLab, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
5
|
Hebbink GA, Janssen PHM, Kok JH, Menarini L, Giatti F, Funaro C, Consoli SF, Dickhoff BHJ. Lubricant Sensitivity of Direct Compression Grades of Lactose in Continuous and Batch Tableting Process. Pharmaceutics 2023; 15:2575. [PMID: 38004554 PMCID: PMC10674241 DOI: 10.3390/pharmaceutics15112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Modern pharmaceutical manufacturing based on Quality by Design and digitalisation is revolutionising the pharmaceutical industry. Continuous processes are promoted as they increase efficiency and improve quality control. Compared to batch blending, continuous blending is easier to scale and provides advantages for achieving blend homogeneity. One potential challenge of continuous blending is the risk of over-lubrication. In this study, blending homogeneity and lubricant sensitivity are investigated for both batch and continuous processes. Given their distinct chemical structures and morphologies, anhydrous lactose and granulated lactose are expected to exhibit varying sensitivities to changes in process settings across both technologies. The findings suggest that both lactose grades provide highly stable blends that can be safely utilised in both batch and continuous modes. Optimisation should focus on process variables, such as the quality of loss-in-weight feeders used for dosing low doses of ingredients. The most significant process parameter for lubricant sensitivity was the type of lactose used. Anhydrous lactose produced harder tablets than the more porous granulated lactose but was more sensitive to lubrication at the same settings. The magnesium stearate content and its interaction with the type of lactose are also critical factors, with magnesium stearate having a counterproductive impact on tabletability.
Collapse
Affiliation(s)
| | - Pauline H. M. Janssen
- DFE Pharma GmbH & Co. KG, 47574 Goch, Germany (B.H.J.D.)
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jurjen H. Kok
- DFE Pharma GmbH & Co. KG, 47574 Goch, Germany (B.H.J.D.)
| | - Lorenzo Menarini
- IMA S.p.A. Active Division, 40064 Ozzano dell’Emilia Bologna, Italy; (L.M.)
| | - Federica Giatti
- IMA S.p.A. Active Division, 40064 Ozzano dell’Emilia Bologna, Italy; (L.M.)
| | - Caterina Funaro
- IMA S.p.A. Active Division, 40064 Ozzano dell’Emilia Bologna, Italy; (L.M.)
| | | | | |
Collapse
|
6
|
C Dias R, Korhonen O, Ketolainen J, A Lopes J, Ervasti T. Flowsheet modelling of a powder continuous feeder-mixer system. Int J Pharm 2023; 639:122969. [PMID: 37084833 DOI: 10.1016/j.ijpharm.2023.122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/28/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
In this study, an integrated flowsheet model of the continuous feeder-mixer system was calibrated, simulated and compared against experimental data. The feeding process was first investigated using two major components (ibuprofen and microcrystalline cellulose (MCC)), in a formulation comprised of: 30 wt% of ibuprofen, 67.5 wt% MCC, 2 wt% of sodium starch glycolate and 0.5 wt% of magnesium stearate. The impact of a refill on feeder performance was experimentally evaluated for different operating conditions. Results showed that it had no influence on feeder performance. While simulations with the feeder model fairly reproduced the material behaviour observed in the feeder, unintended disturbances were underpredicted due to the model's low complexity. Experimentally, mixer's efficiency was assessed based on ibuprofen residence time distribution. Mean residence time pointed to a higher mixer's efficiency at lower flow rates. Blend homogeneity results showed that for the entire set of experiments, ibuprofen RSD <5%, irrespective of process variables. A feeder-mixer flowsheet model was calibrated, after regressing the axial model coefficients. The regression curves exhibited a R2 above 0.96, whereas the RMSE varied from 1.58x10-4 to 1.06x10-3 s-1 across all fitted curves. Simulations confirmed that flowsheet model captured the powder dynamics inside the mixer and qualitatively predicted the mixer's filtering ability against feeding composition fluctuations, as well as ibuprofen RSD in blend, in line with real experiments.
Collapse
Affiliation(s)
- Rute C Dias
- PromisLab, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland; iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal.
| | - Ossi Korhonen
- PromisLab, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jarkko Ketolainen
- PromisLab, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - João A Lopes
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Tuomas Ervasti
- PromisLab, School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
7
|
Razavi SM, Tao Y, Scicolone J, Morker T, Cunningham C, Rajabi-Siahboomi A, Hausner DB, Muzzio FJ. Starch Products as Candidate Excipients in a Continuous Direct Compression Line. J Pharm Innov 2022. [DOI: 10.1007/s12247-020-09504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Kreiser MJ, Wabel C, Wagner KG. Impact of Vertical Blender Unit Parameters on Subsequent Process Parameters and Tablet Properties in a Continuous Direct Compression Line. Pharmaceutics 2022; 14:pharmaceutics14020278. [PMID: 35214014 PMCID: PMC8879867 DOI: 10.3390/pharmaceutics14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
The continuous manufacturing of solid oral-dosage forms represents an emerging technology among the pharmaceutical industry, where several process steps are combined in one production line. As all mixture components, including the lubricant (magnesium stearate), are passing simultaneously through one blender, an impact on the subsequent process steps and critical product properties, such as content uniformity and tablet tensile strength, is to be expected. A design of experiment (DoE) was performed to investigate the impact of the blender variables hold-up mass (HUM), impeller speed (IMP) and throughput (THR) on the mixing step and the subsequent continuous manufacturing process steps. Significant impacts on the mixing parameters (exit valve opening width (EV), exit valve opening width standard deviation (EV SD), torque of lower impeller (TL), torque of lower impeller SD (TL SD), HUM SD and blend potency SD), material attributes of the blend (conditioned bulk density (CBD), flow rate index (FRI) and particle size (d10 values)), tableting parameters (fill depth (FD), bottom main compression height (BCH) and ejection force (EF)) and tablet properties (tablet thickness (TT), tablet weight (TW) and tensile strength (TS)) could be found. Furthermore, relations between these process parameters were evaluated to define which process states were caused by which input variables. For example, the mixing parameters were mainly impacted by impeller speed, and material attributes, FD and TS were mainly influenced by variations in total blade passes (TBP). The current work presents a rational methodology to minimize process variability based on the main blender variables hold-up mass, impeller speed and throughput. Moreover, the results facilitated a knowledge-based optimization of the process parameters for optimum product properties.
Collapse
Affiliation(s)
- Marius J. Kreiser
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108 Freiburg, Germany; (M.J.K.); (C.W.)
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Christoph Wabel
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108 Freiburg, Germany; (M.J.K.); (C.W.)
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
- Correspondence:
| |
Collapse
|
9
|
Velez NL, Drennen JK, Anderson CA. Challenges, opportunities and recent advances in near infrared spectroscopy applications for monitoring blend uniformity in the continuous manufacturing of solid oral dosage forms. Int J Pharm 2022; 615:121462. [PMID: 35026317 DOI: 10.1016/j.ijpharm.2022.121462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Near infrared (NIR) spectroscopy has been widely recognized as a powerful PAT tool for monitoring blend uniformity in continuous manufacturing (CM) processes. However, the dynamic nature of the powder stream and the fast rate at which it moves, compared to batch processes, introduces challenges to NIR quantitative methods for monitoring blend uniformity. For instance, defining the effective sample size interrogated by NIR, selecting the best sampling location for blend monitoring, and ensuring NIR model robustness against influential sources of variability are challenges commonly reported for NIR applications in CM. This article reviews the NIR applications for powder blend monitoring in the continuous manufacturing of solid oral dosage forms, with a particular focus on the challenges, opportunities for method optimization and recent advances with respect three main aspects: effective sample size measured by NIR, probe location and method robustness.
Collapse
Affiliation(s)
- Natasha L Velez
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - James K Drennen
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| | - Carl A Anderson
- Duquesne University Graduate School for Pharmaceutical Sciences, Pittsburgh, PA 15282, United States; Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
10
|
Fathollahi S, Kruisz J, Sacher S, Rehrl J, Escotet-Espinoza MS, DiNunzio J, Glasser BJ, Khinast JG. Development of a Controlled Continuous Low-Dose Feeding Process. AAPS PharmSciTech 2021; 22:247. [PMID: 34642863 PMCID: PMC8510936 DOI: 10.1208/s12249-021-02104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 μm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy.
Collapse
|
11
|
Escotet-Espinoza MS, Scicolone JV, Moghtadernejad S, Sanchez E, Cappuyns P, Van Assche I, Di Pretoro G, Ierapetritou M, Muzzio FJ. Improving Feedability of Highly Adhesive Active Pharmaceutical Ingredients by Silication. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09448-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Vanhoorne V, Vervaet C. Recent progress in continuous manufacturing of oral solid dosage forms. Int J Pharm 2020; 579:119194. [PMID: 32135231 DOI: 10.1016/j.ijpharm.2020.119194] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/28/2022]
Abstract
Continuous drug product manufacturing is slowly being implemented in the pharmaceutical industry. Although the benefits related to the quality and cost of continuous manufacturing are widely recognized, several challenges hampered the widespread introduction of continuous manufacturing of drug products. Current review presents an overview of state-of-the art research, equipment, process analytical technology implementations and advanced control strategies. Additionally, guidelines and regulatory viewpoints on implementation of continuous manufacturing in the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- V Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University.
| |
Collapse
|
13
|
Demonstration of the Feasibility of Predicting the Flow of Pharmaceutically Relevant Powders from Particle and Bulk Physical Properties. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09433-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Moghtadernejad S, Escotet-Espinoza MS, Liu Z, Schäfer E, Muzzio F. Mixing Cell: a Device to Mimic Extent of Lubrication and Shear in Continuous Tubular Blenders. AAPS PharmSciTech 2019; 20:262. [PMID: 31338701 DOI: 10.1208/s12249-019-1473-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022] Open
Abstract
Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale "mixing cell" which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication-evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments-occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process.
Collapse
|
15
|
Escotet-Espinoza MS, Moghtadernejad S, Oka S, Wang Z, Wang Y, Roman-Ospino A, Schäfer E, Cappuyns P, Van Assche I, Futran M, Muzzio F, Ierapetritou M. Effect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: Application of models. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.12.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Sebastian Escotet-Espinoza M, Moghtadernejad S, Oka S, Wang Y, Roman-Ospino A, Schäfer E, Cappuyns P, Van Assche I, Futran M, Ierapetritou M, Muzzio F. Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.10.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Escotet-Espinoza MS, Moghtadernejad S, Scicolone J, Wang Y, Pereira G, Schäfer E, Vigh T, Klingeleers D, Ierapetritou M, Muzzio FJ. Using a material property library to find surrogate materials for pharmaceutical process development. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.08.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|