1
|
Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound Dressing with Electrospun Core-Shell Nanofibers: From Material Selection to Synthesis. Polymers (Basel) 2024; 16:2526. [PMID: 39274158 PMCID: PMC11398146 DOI: 10.3390/polym16172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Mahshahr P.O. Box 63511-41111, Iran
| | - Pezhman Mosallanezhad
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rasht P.O. Box 43841-119, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| |
Collapse
|
2
|
AL-Rajabi MM, Almanassra IW, Khalil AKA, Atieh MA, Laoui T, Khalil KA. Facile Coaxial Electrospinning Synthesis of Polyacrylonitrile/Cellulose Acetate Nanofiber Membrane for Oil-Water Separations. Polymers (Basel) 2023; 15:4594. [PMID: 38232019 PMCID: PMC10708555 DOI: 10.3390/polym15234594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Oil-contaminated water and industrial oily wastewater discharges have adversely affected aquatic ecosystems and human safety. Membrane separation technology offers a promising solution for effective oil-water separation. Thus, a membrane with high surface area, hydrophilic-oleophobic properties, and stability is a promising candidate. Electrospinning, a straightforward and efficient process, produces highly porous polymer-based membranes with a vast surface area and stability. The main objective of this study is to produce hydrophilic-oleophobic polyacrylonitrile (PAN) and cellulose acetate (CA) nanofibers using core-shell electrospinning. Incorporating CA into the shell of the nanofibers enhances the wettability. The core PAN polymer improves the electrospinning process and contributes to the hydrophilicity-oleophobicity of the produced nanofibers. The PAN/CA nanofibers were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and surface-wetting behavior. The resulting PAN/cellulose nanofibers exhibited significantly improved surface-wetting properties, demonstrating super-hydrophilicity and underwater superoleophobicity, making them a promising choice for oil-water separation. Various oils, including gasoline, diesel, toluene, xylene, and benzene, were employed in the preparation of oil-water mixture solutions. The utilization of PAN/CA nanofibers as a substrate proved to be highly efficient, confirming exceptional separation efficiency, remarkable stability, and prolonged durability. The current work introduces an innovative single-step fabrication method of composite nanofibers, specially designed for efficient oil-water separation. This technology exhibits significant promise for deployment in challenging situations, offering excellent reusability and a remarkable separation efficiency of nearly 99.9%.
Collapse
Affiliation(s)
- Maha Mohammad AL-Rajabi
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, UniMAP, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, UniMAP, Arau 02600, Perlis, Malaysia
| | - Ismail W. Almanassra
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
| | - Abdelrahman K. A. Khalil
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
| | - Muataz Ali Atieh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tahar Laoui
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalil Abdelrazek Khalil
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.M.A.-R.); (I.W.A.); (A.K.A.K.); (M.A.A.); (T.L.)
- Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Thakur M, Chandel M, Kumar A, Kumari S, Kumar P, Pathania D. The development of carbohydrate polymer- and protein-based biomaterials and their role in environmental health and hygiene: A review. Int J Biol Macromol 2023; 242:124875. [PMID: 37196726 DOI: 10.1016/j.ijbiomac.2023.124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Biological macromolecules have been significantly used in the medicine due to their certain therapeutic values. Macromolecules have been employed in medical filed in order to enhance, support, and substitute damaged tissues or any other biological function. In the past decade, the biomaterial field has developed considerably because of vast innovations in regenerative medicine, tissue engineering, etc. Different types of biological macromolecules such as natural protein and polysaccharide etc. and synthetic molecules such as metal based, polymer based, and ceramic based etc. have been discussed. These materials can be modified by coatings, fibres, machine parts, films, foams, and fabrics for utilization in biomedical products and other environmental applications. At present, the biological macromolecules can used in different areas like medicine, biology, physics, chemistry, tissue engineering, and materials science. These materials have been used to promote the healing of human tissues, medical implants, bio-sensors and drug delivery, etc. These materials also considered as environmentally sustainable as they are prepared in association with renewable natural resources and living organisms in contrast to non-renewable resources (petrochemicals). In addition, enhanced compatibility, durability and circular economy of biological materials make them highly attractive and innovative for current research.The present review paper summarizes a brief about biological macromolecules, their classification, methods of synthesis, and their role in biomedicine, dyes and herbal products.
Collapse
Affiliation(s)
- Manita Thakur
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Manisha Chandel
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Ajay Kumar
- Department of Chemistry, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Sarita Kumari
- Department of Zoology, Sardar Patel University, Mandi, (HP) 175001, India
| | - Pawan Kumar
- Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla 171013, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Bagla (RahyaSuchani), Jammu 181143, India.
| |
Collapse
|
4
|
Zheng Z, Dai X, Li X, Du C. Functionalization of PCL-based nanofibers loaded with hirudin as blood contact materials. BIOMATERIALS ADVANCES 2023; 149:213416. [PMID: 37058780 DOI: 10.1016/j.bioadv.2023.213416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Blood-contacting materials with good mechanical property, excellent anticoagulant function and promoting effect on endothelialization are in great demand for clinical application such as vascular grafts in treating cardiovascular diseases. In this study, electrospinning nanofiber scaffolds of polycaprolactone (PCL) were functionalized by oxidative self-polymerization of dopamine (PDA) on the surface followed by the modification of anticoagulant recombinant hirudin (rH) molecules. The morphology, structure, mechanical property, degradation behavior, cellular compatibility and blood compatibility of the multifunctional PCL/PDA/rH nanofiber scaffolds were evaluated. The diameter of the nanofibers was between 270-1030 nm. The ultimate tensile strength of the scaffolds was around 4 MPa and the elastic modulus increased with the amount of rH. The degradation tests in vitro indicated that the nanofiber scaffolds began to crack on the 7th day, but still maintained the nanoscale architecture within a month. The cumulative release of rH from the nanofiber scaffold was up to 95.9 % at 30th day. The functionalized scaffolds promoted the adhesion and proliferation of endothelial cells, while resisting platelet adhesion and enhancing anticoagulation effects. The hemolysis ratios of all scaffolds were <2 %. The nanofiber scaffolds are promising candidates for vascular tissue engineering.
Collapse
|
5
|
Lv Y, Han Y, Yu Z, Chen J, Li C, Wang C, Hu P, Liu Y. Core-shell alum-borneol fiber for high bioavailability. Prog Biomater 2022; 11:253-261. [PMID: 35731421 DOI: 10.1007/s40204-022-00192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Currently, the treatment of burns poses a significant challenge to clinical surgical. The use of nanofibers combined with drugs provides an entirely new option for treating burns. Alum-borneol combination has been shown as a promising alternative in clinical burn treatment. However, the utilization of the alum-borneol combination is not optimistic due to the low solubility of borneol. In this study, alum-borneol incorporated polyvinyl pyrrolidone fibers with a core-shell structure were fabricated through coaxial electrospinning. In vitro Borneol release behavior of fibers with different ratios of alum to borneol was explored. Scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimeter, in vitro drug release, and in vitro release mechanism were evaluated. The results showed that the fiber membranes maintained an integrated morphology. In vitro dissolution data showed an improved solubility of borneol, which reached more than 82% at 240 min in alum-borneol fibers. It was 4.8 times higher than borneol powder, and the ratio of alum to borneol was 2:1 for the best results. Therefore, alum-borneol incorporated polyvinyl pyrrolidone fibers can significantly improve the dissolution rate of borneol, which opens up a new way for the combined application of the alum and borneol.
Collapse
Affiliation(s)
- Yarong Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yufen Han
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongxun Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jia Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chenxi Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, Jilin University, Changchun, 130012, Jilin, China
| | - Ping Hu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|