1
|
Maphanga C, Manoto S, Mabena C, Ombinda-Lemboumba S, Maaza M, Mthunzi-Kufa P. Laser-enabled delivery of antiretroviral drugs into HIV-1 infected TZM-bl cells. JOURNAL OF BIOPHOTONICS 2022; 15:e202200043. [PMID: 35852044 DOI: 10.1002/jbio.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The use of femtosecond laser to create sub-microscopic transient pores on the cell membrane allowing exogenous material into mammalian cells has become a very efficient optical delivery method over the past decade. This study focuses on laser-enabled delivery of antiretroviral (ARV) drugs into HIV-1 infected TZM-bl cells in vitro. A 1 kHz femtosecond laser emitting at a wavelength of 800 nm was used to photoporate cells at 6.5 μW. Trypan blue was used for characterisation and its uptake was quantified using Matlab software. Cell membrane damage was assessed using the lactate dehydrogenase (LDH) assay while HIV-1 infection was assessed using luciferase assay. Our results showed successful delivery of ARVs into HIV-1 infected cells without compromising their cell membranes, subsequently reducing the level of infection. The LDH assay showed no significant cell membrane damage of laser-treated cells, and the luciferase assay demonstrated significant reduction in the level of HIV-1 infection.
Collapse
Affiliation(s)
- Charles Maphanga
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Physics, NB Pityana Building, University of South Africa, Science Campus, Florida, South Africa
| | - Sello Manoto
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Chemist Mabena
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | | | - Malik Maaza
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
2
|
Ghare SS, Chilton PM, Rao AV, Joshi-Barve S, Peyrani P, Reyes Vega A, McClain CJ, Bryant K, Cook RL, Freiberg M, Barve S. Epigenetic Mechanisms Underlying HIV-Infection Induced Susceptibility of CD4+ T Cells to Enhanced Activation-Induced FasL Expression and Cell Death. J Acquir Immune Defic Syndr 2021; 86:128-137. [PMID: 33093334 PMCID: PMC8384352 DOI: 10.1097/qai.0000000000002526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic immune activation and CD4 T cell depletion are significant pathogenic features of HIV infection. Expression of Fas ligand (FasL), a key mediator of activation-induced cell death in T cells, is elevated in people living with HIV-1 infection (PLWH). However, the epigenetic mechanisms underlying the enhanced induction of FasL expression in CD4 T lymphocytes in PLWH are not completely elucidated. Hence, the current work examined the effect of HIV infection on FasL promoter-associated histone modifications and transcriptional regulation in CD4 T lymphocytes in PLWH. METHOD Flow cytometric analysis was performed to examine the Fas-FasL expression on total CD4 T cells and naïve/memory CD4 T cell subsets. Epigenetic FasL promoter histone modifications were investigated by chromatin immunoprecipitation-quantitative real-time polymerase chain reaction analysis using freshly isolated total CD4 T lymphocytes from HIV-1 infected and noninfected individuals. RESULTS All naïve/memory CD4 T cell subsets from PLWH showed markedly greater frequency of FasL expression. Notably, examination of functional outcome of FasL/Fas co-expression demonstrated the preferential susceptibility of Tcm and Tem subsets to activation-induced apoptosis. Importantly, these CD4 T cells collectively demonstrated a distinct FasL promoter histone profile involving a coordinated cross-talk between histone H3 modifications leading to enhanced FasL gene expression. Specifically, levels of transcriptionally permissive histone H3K4-trimethylation (H3K4Me3) and histone H3K9-acetylation (H3K9Ac) were increased, with a concomitant decrease in the repressive H3K9-trimethylation (H3K9Me3). CONCLUSION The present work demonstrates that epigenetic mechanisms involving promoter-histone modifications regulate transcriptional competence and FasL expression in CD4 T cells from PLWH and render them susceptible to activation-induced cell death.
Collapse
Affiliation(s)
- Smita S. Ghare
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Paula M. Chilton
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Aakarsha V. Rao
- Department of Medicine, University of Louisville, Louisville, KY
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Paula Peyrani
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Andrea Reyes Vega
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Kendall Bryant
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Robert L. Cook
- Department of Epidemiology and Biostatistics, University of Florida, Gainesville, FL
| | - Mathew Freiberg
- Department of Medicine, Vanderbilt University Medical Center
| | - Shirish Barve
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| |
Collapse
|
3
|
Qian Y, Che X, Jiang J, Wang Z. Mechanisms of Blood-Retinal Barrier Disruption by HIV-1. Curr HIV Res 2020; 17:26-32. [PMID: 30873925 DOI: 10.2174/1570162x17666190315163514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
It has been found that human immunodeficiency virus (HIV)-1 RNA or antigens can be detected in the intraocular tissues of HIV-1 patients even under effective highly active anti-retroviral therapy (HAART). In vivo, blood-retinal barrier (BRB) establishes a critical, physiological guardian against microbial invasion of the eye, but may be compromised in the presence of HIV-1. The envelope glycoprotein gp120 is exposed on the surface of the HIV envelope, essential for virus entry into cells by the attachment to specific cell surface receptors. The BRB disruption by glycoprotein gp120 has been widely recognized, which is toxic to human retinal epithelial cells (RPE) and umbilical vein endothelial cells (HUVEC). The present review elaborates on various mechanisms of BRB disruption induced by HIV gp120, which may represent potential targets for the prevention of ocular HIV complications in the future.
Collapse
Affiliation(s)
- Yiwen Qian
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Xin Che
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jing Jiang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Zhiliang Wang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Pandhare J, Dash S, Jones B, Villalta F, Dash C. A Novel Role of Proline Oxidase in HIV-1 Envelope Glycoprotein-induced Neuronal Autophagy. J Biol Chem 2015; 290:25439-51. [PMID: 26330555 DOI: 10.1074/jbc.m115.652776] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 12/17/2022] Open
Abstract
Proline oxidase (POX) catalytically converts proline to pyrroline-5-carboxylate. This catabolic conversion generates reactive oxygen species (ROS) that triggers cellular signaling cascades including autophagy and apoptosis. This study for the first time demonstrates a role of POX in HIV-1 envelope glycoprotein (gp120)-induced neuronal autophagy. HIV-1 gp120 is a neurotoxic factor and is involved in HIV-1-associated neurological disorders. However, the mechanism of gp120-mediated neurotoxicity remains unclear. Using SH-SY5Y neuroblastoma cells as a model, this study demonstrates that gp120 treatment induced POX expression and catalytic activity. Concurrently, gp120 also increased intracellular ROS levels. However, increased ROS had a minimal effect on neuronal apoptosis. Further investigation indicated that the immediate cellular response to increased ROS paralleled with induction of autophagy markers, beclin-1 and LC3-II. These data lead to the hypothesis that neuronal autophagy is activated as a cellular protective response to the toxic effects of gp120. A direct and functional role of POX in gp120-mediated neuronal autophagy was examined by inhibition and overexpression studies. Inhibition of POX activity by a competitive inhibitor "dehydroproline" decreased ROS levels concomitant with reduced neuronal autophagy. Conversely, overexpression of POX in neuronal cells increased ROS levels and activated ROS-dependent autophagy. Mechanistic studies suggest that gp120 induces POX by targeting p53. Luciferase reporter assays confirm that p53 drives POX transcription. Furthermore, data demonstrate that gp120 induces p53 via binding to the CXCR4 co-receptor. Collectively, these results demonstrate a novel role of POX as a stress response metabolic regulator in HIV-1 gp120-associated neuronal autophagy.
Collapse
Affiliation(s)
- Jui Pandhare
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Microbiology and Immunology, and
| | - Sabyasachi Dash
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research
| | - Bobby Jones
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Microbiology and Immunology, and
| | - Fernando Villalta
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Microbiology and Immunology, and
| | - Chandravanu Dash
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
5
|
Mbita Z, Hull R, Dlamini Z. Human immunodeficiency virus-1 (HIV-1)-mediated apoptosis: new therapeutic targets. Viruses 2014; 6:3181-227. [PMID: 25196285 PMCID: PMC4147692 DOI: 10.3390/v6083181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022] Open
Abstract
HIV has posed a significant challenge due to the ability of the virus to both impair and evade the host’s immune system. One of the most important mechanisms it has employed to do so is the modulation of the host’s native apoptotic pathways and mechanisms. Viral proteins alter normal apoptotic signaling resulting in increased viral load and the formation of viral reservoirs which ultimately increase infectivity. Both the host’s pro- and anti-apoptotic responses are regulated by the interactions of viral proteins with cell surface receptors or apoptotic pathway components. This dynamic has led to the development of therapies aimed at altering the ability of the virus to modulate apoptotic pathways. These therapies are aimed at preventing or inhibiting viral infection, or treating viral associated pathologies. These drugs target both the viral proteins and the apoptotic pathways of the host. This review will examine the cell types targeted by HIV, the surface receptors exploited by the virus and the mechanisms whereby HIV encoded proteins influence the apoptotic pathways. The viral manipulation of the hosts’ cell type to evade the immune system, establish viral reservoirs and enhance viral proliferation will be reviewed. The pathologies associated with the ability of HIV to alter apoptotic signaling and the drugs and therapies currently under development that target the ability of apoptotic signaling within HIV infection will also be discussed.
Collapse
Affiliation(s)
- Zukile Mbita
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Zodwa Dlamini
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| |
Collapse
|
6
|
The majority of CD4+ T-cell depletion during acute simian-human immunodeficiency virus SHIV89.6P infection occurs in uninfected cells. J Virol 2014; 88:3202-12. [PMID: 24390339 DOI: 10.1128/jvi.03428-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Untreated human immunodeficiency virus (HIV) infection is characterized by depletion of CD4(+) T cells, ultimately leading to the impairment of host immune defenses and death. HIV-infected CD4(+) T cells die from direct virus-induced apoptosis and CD8 T-cell-mediated elimination, but a broader and more profound depletion occurs in uninfected CD4(+) T cells via multiple indirect effects of infection. We fit mathematical models to data from experiments that tested an HIV eradication strategy in which five macaques with a proportion of CD4(+) T cells resistant to simian-human immunodeficiency virus (SHIV) entry were challenged with SHIV89.6P, a highly pathogenic dual-tropic chimeric SIV-HIV viral strain that results in rapid loss of both SHIV-susceptible and SHIV-resistant CD4(+) T cells. Our results suggest that uninfected (bystander) cell death accounts for the majority of CD4(+) T-lymphocyte loss, with at least 60% and 99% of CD4(+) T cell death occurring in uninfected cells during acute and established infection, respectively. Mechanisms to limit the profound indirect killing effects associated with HIV infection may be associated with immune preservation and improved long-term survival. IMPORTANCE HIV infection induces a massive depletion of CD4(+) T cells, leading to profound immunodeficiency, opportunistic infections, and eventually death. While HIV induces apoptosis (programmed cell death) by directly entering and replicating in CD4(+) T cells, uninfected CD4(+) T cells also undergo apoptosis due to ongoing toxic inflammation in the region of infection. In this paper, we use mathematical models in conjunction with data from simian-human immunodeficiency virus SHIV89.6P infection in macaques (a model of HIV infection in humans) to estimate the percentage of cell death that occurs in uninfected cells during the initial period of infection. We reveal that the vast majority of cell death occurs in these cells, which are not infected. The "bystander effects" that lead to enormous reductions in the number of uninfected CD4(+) T cells may be a target for future interventions that aim to limit the extent of damage caused by HIV.
Collapse
|
7
|
Perinatal outcomes, mitochondrial toxicity and apoptosis in HIV-treated pregnant women and in-utero-exposed newborn. AIDS 2012; 26:419-28. [PMID: 22156962 DOI: 10.1097/qad.0b013e32834f3232] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Highly active antiretroviral therapy (HAART) has decreased the risk of HIV mother-to-child transmission. However, HIV and HAART have been associated with adverse perinatal outcome. HAART has been associated with mitochondrial dysfunction in nonpregnant adults, and HIV, additionally, to apoptosis. We determined whether mitochondrial toxicity and apoptosis are present in HIV-pregnant women and their newborns and could be the basis of adverse pregnancy outcome. DESIGN Single-site, cross-sectional, controlled observational study without intervention. METHODS We studied mitochondrial and apoptotic parameters in mononuclear cells from maternal peripheral blood and infant cord blood at delivery in 27 HIV-infected and treated pregnant women, and 35 uninfected controls and their infants, to correlate clinical outcome with experimental findings: mitochondrial number (CS), mtDNA content (ND2/18SrRNA), mitochondrial protein synthesis (COX-II/V-DAC), mitochondrial function (enzymatic activities) and apoptotic rate (caspase-3/β-actin). RESULTS Global adverse perinatal outcome, preterm births and small newborn for gestational age were significantly increased in HIV pregnancies [odds ratio (OR) 7.33, 5.77 and 9.71]. Mitochondrial number was unaltered. The remaining mitochondrial parameters were reduced in HIV mothers and their newborn; especially newborn mtDNA levels, maternal and fetal mitochondrial protein synthesis and maternal glycerol-3-phosphate + complex III function (38.6, 25.8, 13.6 and 31.2% reduced, respectively, P < 0.05). All materno-fetal mitochondrial parameters significantly correlated, except mtDNA content. Apoptosis was exclusively increased in infected pregnant women, but not in their newborn. However, adverse perinatal outcome did not correlate mitochondrial or apoptotic findings. CONCLUSIONS Transplacental HAART toxicity may cause subclinical mitochondrial damage in HIV-pregnant women and their newborn. Trends to increased maternal apoptosis may be due to maternal-restricted HIV infection. However, we could not demonstrate mitochondrial or apoptotic implication in adverse perinatal outcome.
Collapse
|
8
|
Wang X, Ragupathy V, Zhao J, Hewlett I. Molecules from apoptotic pathways modulate HIV-1 replication in Jurkat cells. Biochem Biophys Res Commun 2011; 414:20-4. [PMID: 21945613 DOI: 10.1016/j.bbrc.2011.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
Abstract
The replication of viruses involves control of some aspects of host cell homeostasis by modification of target cell metabolism and regulation of the apoptotic machinery. It is not well known whether molecules involved in apoptotic pathways affect human immunodeficiency virus type 1 (HIV-1) replication and regulate viral yields. Using the susceptible Jurkat cell line, we studied the relationship of apoptosis-associated molecules with HIV-1 virus production using a sensitive real-time RT-PCR assay. Here, we found that expression of proapoptotic proteins, including Fas ligand (FasL), FADD, or p53 significantly increased HIV-1 virus production. In contrast, the expression of antiapoptotic molecules, such as FLIP, Bcl-X(L), and XIAP, decreased HIV-1 virus production. Knockdown of Bax with siRNA and FADD with expression of its antisense mRNA also inhibited viral replication and the caspase-3 inhibitor, Z-DEVD, and decreased virus production. These data indicate that HIV-1 infection regulates the apoptosis process to facilitate viral replication and inhibition of apoptosis may inhibit HIV-1 replication and cytopathogenesis. We also discuss the effects of MAPK signaling pathways and apoptosis on HIV-1 replication.
Collapse
Affiliation(s)
- Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|