1
|
Jiang L, Ye WC, Li Z, Yang Y, Dai W, Li M. Anticancer effects of dihydromyricetin on the proliferation, migration, apoptosis and in vivo tumorigenicity of human hepatocellular carcinoma Hep3B cells. BMC Complement Med Ther 2021; 21:194. [PMID: 34229692 PMCID: PMC8258952 DOI: 10.1186/s12906-021-03356-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) represents a serious public health problem worldwide and has high morbidity and mortality. Dihydromyricetin (DHM) exhibits anticancer effect on a variety of malignancies, but its anticancer function of DHM in HCC has been unclear. The aim of this study was designed to investigate the anticancer effect of DHM on cell apoptosis, proliferation, migration and invasion of hepatoma carcinoma cells. Methods Cultured Hep3B cells were treated with different DHM concentrations, followed by cell apoptosis, proliferation, migration and invasion were examined by CCK-8, colony formation assay, wound healing, Transwell and flow cytometry, respectively. The mRNA and protein expression of BCL-2, Cleaved-caspase 3, Cleaved-caspase 9, BAK, BAX and BAD were validated by western blot. Results DHM markedly suppressed proliferation, migration, invasion and facilitated apoptosis in Hep3B cells. Mechanistically, DHM significantly downregulated the Bcl-2 expression, and upregulated the mRNA and protein levels of Cleaved-Caspase 3, Cleaved- Caspase 9, Bak, Bax and Bad. Furthermore, in the nude mice tumorigenic model, DHM treatment greatly decreased the weight of the HCC cancers compared to the weights in control and NDP group. Conclusions DHM could suppress cell proliferation, migration, invasion, and facilitated apoptosis in Hep3B cells. These findings could provide novel insights to develop potential therapeutic strategy for the clinical treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03356-5.
Collapse
Affiliation(s)
- Lianggui Jiang
- Laboratory of Hepatobiliary Surgery, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China.,Department of Thyroid and Breast Surgery, The People's Hospital of Ganzhou, Ganzhou Affiliated Hospital of Nanchang University, Ganzhou, Jiangxi, 341000, P.R. China
| | - Wen-Chu Ye
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Zuobiao Li
- Laboratory of Hepatobiliary Surgery, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| | - Yongguang Yang
- Laboratory of Hepatobiliary Surgery, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| | - Wei Dai
- Laboratory of Hepatobiliary Surgery, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| | - Mingyi Li
- Laboratory of Hepatobiliary Surgery, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China.
| |
Collapse
|
2
|
Ampelopsin inhibits human glioma through inducing apoptosis and autophagy dependent on ROS generation and JNK pathway. Biomed Pharmacother 2019; 116:108524. [PMID: 31108349 DOI: 10.1016/j.biopha.2018.12.136] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/25/2018] [Accepted: 12/30/2018] [Indexed: 01/29/2023] Open
Abstract
Glioma is the most common form of malignant brain cancer with high mortality rate in human. Therefore, finding effective therapeutic strategy and revealing the underlying molecular mechanism is necessary. Ampelopsin (Amp), an effective component of the traditional Chinese herb of Ampelopsis grossedentata, is reported to have important biological properties, including anti-inflammatory, anti-cancer, and anti-oxidant activity; however, its effects on human glioma are poorly understood. Here, the in vitro and in vivo study was performed to investigate the anti-glioma ability of Ampelopsin. Human glioma cell lines of U251 and A172 were treated with Ampelopsin (0, 25, 50, and 100 uM) for 24 h, followed by various analysis. And human glioma xenograft models were established by injecting U251, accompanied with administration of Ampelopsin at 50 and 100 mg/kg to confirm the anti-cancer role of Ampelopsin. We found that Ampelopsin could suppress the glioma cell proliferation by modulating G1 and S phase arrest. Incubation with Ampelopsin led to the activity of Caspase-8, Caspase-9, Caspase-3 and poly (ADP-ribose) polymerases (PARP), indicating that Ampelopsin induced apoptotic response via both intrinsic and extrinsic signaling pathways. Additionally, autophagy was also observed in Ampelopsin-treated cancer cells, which is evidenced by autophagosome formation and LC3B-II accumulation. Ampelopsin-caused cancer cell death was obviously regained by apoptosis inhibitors. Further, Ampelopsin activated c-Jun N-terminal protein kinase (JNK) expression and enhanced reactive oxygen species (ROS) generation. Suppressing JNK markedly ameliorated Ampelopsin-induced apoptosis and autophagy, and ROS scavenger exhibited similar results. In vivo, Ampelopsin inhibited tumor growth and progression in mouse xenograft models. In conclusion, our findings indicated that Ampelopsin led to G1 and S phase arrest, triggered apoptosis and autophagy through potentiating ROS generation and JNK activation in human glioma cells. Thus, Ampelopsin might be a promising candidate against human glioma.
Collapse
|
3
|
Silberstein E, Ulitzky L, Lima LA, Cehan N, Teixeira-Carvalho A, Roingeard P, Taylor DR. HCV-Mediated Apoptosis of Hepatocytes in Culture and Viral Pathogenesis. PLoS One 2016; 11:e0155708. [PMID: 27280444 PMCID: PMC4900611 DOI: 10.1371/journal.pone.0155708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022] Open
Abstract
Chronic Hepatitis C Virus (HCV) infection is associated with progressive liver injury and subsequent development of fibrosis and cirrhosis. The death of hepatocytes results in the release of cytokines that induce inflammatory and fibrotic responses. The mechanism of liver damage is still under investigation but both apoptosis and immune-mediated processes may play roles. By observing the changes in gene expression patterns in HCV-infected cells, both markers and the causes of HCV-associated liver injury may be elucidated. HCV genotype 1b virus from persistently infected VeroE6 cells induced a strong cytopathic effect when used to infect Huh7.5 hepatoma cells. To determine if this cytopathic effect was a result of apoptosis, ultrastructural changes were observed by electron microscopy and markers of programmed cell death were surveyed. Screening of a human PCR array demonstrated a gene expression profile that contained upregulated markers of apoptosis, including tumor necrosis factor, caspases and caspase activators, Fas, Bcl2-interacting killer (BIK) and tumor suppressor protein, p53, as a result of HCV genotype 1b infection. The genes identified in this study should provide new insights into understanding viral pathogenesis in liver cells and may possibly help to identify novel antiviral and antifibrotic targets.
Collapse
Affiliation(s)
- Erica Silberstein
- Laboratory of Emerging Pathogens, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER FDA, Silver Spring, MD, 20903, United States of America
| | - Laura Ulitzky
- Laboratory of Emerging Pathogens, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER FDA, Silver Spring, MD, 20903, United States of America
| | - Livia Alves Lima
- Laboratory of Emerging Pathogens, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER FDA, Silver Spring, MD, 20903, United States of America
| | - Nicoleta Cehan
- Laboratory of Emerging Pathogens, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER FDA, Silver Spring, MD, 20903, United States of America
| | - Andréa Teixeira-Carvalho
- Laboratory of Emerging Pathogens, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER FDA, Silver Spring, MD, 20903, United States of America
| | - Philippe Roingeard
- INSERM U966, Universite Francois Rabelais and CHRU de Tours, Tours, France
| | - Deborah R. Taylor
- Laboratory of Emerging Pathogens, Division of Emerging Transfusion Transmitted Diseases, Office of Blood Research and Review, CBER FDA, Silver Spring, MD, 20903, United States of America
- * E-mail:
| |
Collapse
|
4
|
Li G, Zhang H, Liu Y, Kong L, Guo Q, Jin F. Effect of temozolomide on livin and caspase-3 in U251 glioma stem cells. Exp Ther Med 2014; 9:744-750. [PMID: 25667622 PMCID: PMC4316973 DOI: 10.3892/etm.2014.2144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/09/2014] [Indexed: 12/04/2022] Open
Abstract
The aim of the present study was to analyze the effect of temozolomide (TMZ) on the antiapoptotic gene livin and the associated gene caspase-3. Cancer stem cells were isolated from U251 glioblastoma cells using immunomagnetic beads. The glioma cells and glioma stem cells were transfected with livin or small hairpin RNA (shRNA) against livin using lentiviral vectors. Quantitative PCR, flow cytometry and a Cell Counting kit-8 assay were used to detect the expression of livin and caspase-3, analyze the cell cycle and investigate cell proliferation, respectively, following treatment with various concentrations of TMZ (0, 25, 50, 100, 200 and 400 μmol/l) for different periods of time (24, 48 and 72 h). The expression levels of livin and caspase-3 in the U251 stem cells were significantly higher than those in the U251 cells (P<0.01). At the same intervention time, the expression levels of livin decreased and those of caspase-3 increased as the concentration of TMZ increased (P<0.05). The expression levels of livin and caspase-3 in the U251 cells were lower than those in the U251 stem cells with the same intervention time and concentration of TMZ (P<0.05). The cell cycle was arrested in the G2/M phase in the U251 cells following TMZ intervention; the proportion of cells in the G2/M phase increased as the concentration of TMZ increased (P<0.05). The U251 stem cells were arrested in the S phase following treatment with TMZ; the proportion of cells in the S phase increased as the concentration of TMZ increased (P<0.05). In conclusion, the expression levels of livin and caspase-3 were effectively inhibited and increased, respectively, in all cell models following treatment with TMZ. TMZ is able to arrest the cell cycle and enhance cell apoptosis. U251 stem cells are less vulnerable than U251 cells to TMZ.
Collapse
Affiliation(s)
- Genhua Li
- Neuro-oncology Laboratory, Department of Neurosurgery, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Hao Zhang
- Neuro-oncology Laboratory, Department of Neurosurgery, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Yang Liu
- Neuro-oncology Laboratory, Department of Neurosurgery, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Lingsheng Kong
- Neuro-oncology Laboratory, Department of Neurosurgery, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Qiang Guo
- Neuro-oncology Laboratory, Department of Neurosurgery, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| | - Feng Jin
- Neuro-oncology Laboratory, Department of Neurosurgery, Affiliated Hospital of Jining Medical College, Jining, Shandong 272029, P.R. China
| |
Collapse
|
5
|
Monteiro F, Carinhas N, Carrondo MJT, Bernal V, Alves PM. Toward system-level understanding of baculovirus-host cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Front Microbiol 2012; 3:391. [PMID: 23162544 PMCID: PMC3494084 DOI: 10.3389/fmicb.2012.00391] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/23/2012] [Indexed: 01/16/2023] Open
Abstract
Baculoviruses are insect viruses extensively exploited as eukaryotic protein expression vectors. Molecular biology studies have provided exciting discoveries on virus-host interactions, but the application of omic high-throughput techniques on the baculovirus-insect cell system has been hampered by the lack of host genome sequencing. While a broader, systems-level analysis of biological responses to infection is urgently needed, recent advances on proteomic studies have yielded new insights on the impact of infection on the host cell. These works are reviewed and critically assessed in the light of current biological knowledge of the molecular biology of baculoviruses and insect cells.
Collapse
Affiliation(s)
- Francisca Monteiro
- Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica Oeiras, Portugal ; Animal Cell Technology Unit, Instituto de Tecnologia Quimica e Biológica Oeiras, Portugal
| | | | | | | | | |
Collapse
|