1
|
Cai L, Xu B, Li H, Xu Y, Wei W, Zhang R. Spatiotemporal Shift of T4-Like Phage Community Structure in the Three Largest Estuaries of China. Microbiol Spectr 2023; 11:e0520322. [PMID: 36877016 PMCID: PMC10101079 DOI: 10.1128/spectrum.05203-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
Estuaries are one of the most highly productive and economically important ecosystems at the continent-ocean interface. Estuary productivity is largely determined by the microbial community structure and activity. Viruses are major agents of microbial mortality and are key drivers of global geochemical cycles. However, the taxonomic diversity of viral communities and their spatial-temporal distribution in estuarine ecosystems have been poorly studied. In this study, we investigated the T4-like viral community composition at three major Chinese estuaries in winter and in summer. Diverse T4-like viruses, which were divided into three main clusters (Clusters I to III), were revealed. The Marine Group of Cluster III, with seven identified subgroups, was the most dominant (averaging 76.5% of the total sequences) in the Chinese estuarine ecosystems. Significant variations of T4-like viral community composition were observed among estuaries and seasons, with higher diversity occurring in winter. Among various environmental variables, temperature was a main driver of the viral communities. This study demonstrates viral assemblage diversification and seasonality in Chinese estuarine ecosystems. IMPORTANCE Viruses are ubiquitous but largely uncharacterized members of aquatic environments that cause significant mortality in microbial communities. Recent large-scale oceanic projects have greatly advanced our understanding of viral ecology in marine environments, but those studies mostly focused on oceanic regions. There have yet to be spatiotemporal studies of viral communities in estuarine ecosystems, which are unique habitats that play a significant role in global ecology and biogeochemistry. This work is the first comprehensive study that provides a detailed picture of the spatial and seasonal variation of viral communities (specifically, T4-like viral communities) in three major estuarine ecosystems in China. These findings provide much-needed knowledge regarding estuarine viral ecosystems, which currently lags in oceanic ecosystem research.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bu Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huifang Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang, China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Shandong, China
| | - Wei Wei
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Potapov SA, Tikhonova IV, Krasnopeev AY, Suslova MY, Zhuchenko NA, Drucker VV, Belykh OI. Communities of T4-like bacteriophages associated with bacteria in Lake Baikal: diversity and biogeography. PeerJ 2022. [DOI: 10.7717/peerj.12748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lake Baikal phage communities are important for lake ecosystem functioning. Here we describe the diversity of T4-bacteriophage associated with the bacterial fraction of filtered water samples collected from the pelagic zone, coastal zone and shallow bays. Although the study of the diversity of phages for the g23 gene has been carried out at Lake Baikal for more than ten years, shallow bays that comprise a significant part of the lake’s area have been neglected, and this gene has not previously been studied in the bacterial fraction. Phage communities were probed using amplicon sequencing methods targeting the gene of major capsid protein (g23) and compared phylogenetically across sample locations and with sequences previously retrieved from non-bacterial fractions (<0.2 um) and biofilms (non-fractionated). In this study, we examined six water samples, in which 24 to 74 viral OTUs were obtained. The sequences from shallow bays largely differed from those in the pelagic and coastal samples and formed individual subcluster in the UPGMA tree that was obtained from the comparison of phylogenetic distances of g23 sequence sets from various ecosystems, reflecting differences in viral communities depending on the productivity of various sites of Lake Baikal. According to the RefSeq database, from 58.3 to 73% of sequences of each sample had cultivated closest relatives belonging to cyanophages. In this study, for phylogenetic analysis, we chose the closest relatives not only from the RefSeq and GenBank NR databases but also from two marine and one freshwater viromes: eutrophic Osaka Bay (Japan), oligotrophic area of the Pacific Ocean (Station ALOHA) and mesotrophic and ancient Lake Biwa (Japan), which allowed us to more fully compare the diversity of marine and freshwater phages. The identity with marine sequences at the amino acid level ranged from 35 to 80%, and with the sequences from the viral fraction and bacterial one from Lake Biwa—from 35.3 to 98% and from 33.9 to 89.1%, respectively. Therefore, the sequences from marine viromes had a greater difference than those from freshwater viromes, which may indicate a close relationship between freshwater viruses and differences from marine viruses.
Collapse
Affiliation(s)
| | | | | | - Maria Yurjevna Suslova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | | | | | - Olga Ivanovna Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
3
|
Zang L, Liu Y, Song X, Cai L, Liu K, Luo T, Zhang R. Unique T4-like phages in high-altitude lakes above 4500 m on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149649. [PMID: 34428653 DOI: 10.1016/j.scitotenv.2021.149649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Viruses are the most abundant biological entities in the biosphere; however, little is known about viral ecology in high altitude lakes. Here, we characterized viruses from 13 lakes, nine of which located ≥4500 m above sea level, on the Tibetan Plateau, the highest plateau on Earth. The abundance of virus-like particle (VLP) in Tibetan lakes ranged from 4.8 ± 0.2 × 105 VLPs mL-1 to 6.0 ± 0.2 × 107 VLPs mL-1 and the virus-to-bacterium ratio was in the lower range of values reported for other lakes. The viral population size was positively correlated with turbidity and negatively correlated with particulate organic carbon concentration. Highly diverse VLP morphologies, including large (~300 nm) morphotypes, were observed. Phylogenetic analysis of T4-like bacteriophages based on major capsid gene (g23) identified a novel viral group, which were detected in abundance in hyposaline and mesosaline Tibetan lakes. Adaptation to lake evolution, water source (glacier-fed or non-glacier-fed) and environmental conditions (e.g., salinity, phosphorus concentration and productivity) are likely responsible for the variation in T4-like myovirus community composition in contrasting Tibetan lakes. This first investigation of viruses in high-altitude alpine lakes above 4500 m could contribute to our understanding of viral ecology in global alpine lakes.
Collapse
Affiliation(s)
- Lin Zang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Science, Beijing 100101, China.
| | - Xuanying Song
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
4
|
Growth characteristics of lytic cyanophages newly isolated from the Nakdong River, Korea. Virus Res 2021; 306:198600. [PMID: 34648883 DOI: 10.1016/j.virusres.2021.198600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Cyanophages are primary regulators of cyanobacterial harmful algal blooms (CyanoHABs), and they control host cyanobacterial dynamics, frequency, and diversity in the aquatic environment. This study deals with growth characteristics of three lytic cyanophages, Myoviridae AGM-1, Myoviridae NGM-1, and Podoviridae NDP-1, newly isolated from the Nakdong River in South Korea. These isolates are capable of infecting Amazoninema brasiliense, Nododsilinea nodulosa, and Nostoc sp. The results showed that abiotic parameters such as water temperature and pH balance significantly affect the growth of a cyanophage and the interaction with its host in the aquatic environment. The optimal growth conditions of the newly isolated cyanophages are less than 37 °C and pH 9, whereas optimal conditions are 25-30 °C and pH 7 for the cyanobacteria used as hosts. However, each cyanophage was found to have significantly different growth characteristics in phage titer, latent period, and burst size, depending on the characteristics of the species. Among the three cyanophages, Podoviridae NDP-1 showed the highest burst size and infection activity. The lower the designed multiplicity of infection (MOI) ratio (0.01 to 10), the longer it takes to lyse the host cells. The minimum MOI value for sustainable biocontrol of CyanoHABs is proposed as MOI=1. These results can be used as basic information in further studies, such as pyophage control of CyanoHABs and enrichment of cyanophages with high activity.
Collapse
|
5
|
Molecular Diversity of Cyanopodoviruses in Two Coastal Wetlands in Northeast China. Curr Microbiol 2019; 76:863-871. [DOI: 10.1007/s00284-019-01700-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/30/2019] [Indexed: 11/27/2022]
|
6
|
Liu L, Cai L, Zhang R. Co-existence of freshwater and marine T4-like myoviruses in a typical subtropical estuary. FEMS Microbiol Ecol 2018; 93:4584463. [PMID: 29099976 DOI: 10.1093/femsec/fix119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
Viruses are the most abundant biological entities on Earth and play an important role in microbial community dynamics and biogeochemical cycling, yet their ecological characteristics in estuarine ecosystems are unclear. Here, virioplankton communities in a typical subtropical estuary, the Jiulong River estuary (JRE) in China, were investigated. The abundance of virioplankton ranged from 1.01 ± 0.05 × 107 to 1.62 ± 0.09 × 107 particles mL-1 in JRE, and the population size of viruses was correlated with temperature and nutrient levels. Three tailed viral morphotypes (myovirus, siphovirus and podovirus) were observed. Phylogenetic analysis showed that most of the g23 sequences in the JRE fell into three previously established groups (Marine, Paddy and Lake Groups) and two potential Estuary Groups. This demonstrates the co-existence of typical freshwater and marine T4-like myoviruses in the estuarine ecosystem, suggesting the movement of viruses and their hosts among biomes. Additionally, the spatial variation of g23 sequences suggests a geographic distribution pattern of T4-like myoviruses in the JRE, which might be shaped by the environmental gradient and/or their host distribution. These results provide valuable insights into the abundance, diversity and distribution patterns of virioplankton, as well as the factors influencing them, in subtropical estuarine ecosystems.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiang'an, Xiamen, Fujian 361102, People's Republic of China
| | - Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiang'an, Xiamen, Fujian 361102, People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiang'an, Xiamen, Fujian 361102, People's Republic of China
| |
Collapse
|
7
|
Potapov S, Belykh O, Krasnopeev A, Gladkikh A, Kabilov M, Tupikin A, Butina T. Assessing the diversity of the g23 gene of T4-like bacteriophages from Lake Baikal with high-throughput sequencing. FEMS Microbiol Lett 2018; 365:4693836. [PMID: 29228190 DOI: 10.1093/femsle/fnx264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Based on second generation sequencing (MiSeq platform, Illumina), we determined the genetic diversity of T4-like bacteriophages of the family Myoviridae by analysing fragments of the major capsid protein gene g23 in the plankton of Lake Baikal. The sampling depth in our study was significantly higher than in those obtained by the Sanger method before. We obtained 33 701 sequences of the g23 gene fragments, 141 operational taxonomic units (OTUs) of which were identified. 86 OTUs (60.9%) had the closest relatives from lakes Bourget and Annecy, and 28 OTUs (19.8%) had the highest identity with the Baikal g23 clones, which had been previously identified in the northern and southern basins of the lake by the Sanger method. The remaining OTUs were similar to the clones from other ecosystems. We showed a high genetic diversity of T4-type bacteriophages and a genetic difference with the phage communities from other ecosystems.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Olga Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Andrey Krasnopeev
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Anna Gladkikh
- Laboratory of Cholera, Irkutsk Antiplague Research Institute of Siberia and Far East, Irkutsk 664047, Russia
| | - Marsel Kabilov
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Aleksey Tupikin
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Tatyana Butina
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| |
Collapse
|
8
|
Arkhipova K, Skvortsov T, Quinn JP, McGrath JW, Allen CC, Dutilh BE, McElarney Y, Kulakov LA. Temporal dynamics of uncultured viruses: a new dimension in viral diversity. ISME JOURNAL 2017; 12:199-211. [PMID: 29027998 DOI: 10.1038/ismej.2017.157] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/26/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022]
Abstract
Recent work has vastly expanded the known viral genomic sequence space, but the seasonal dynamics of viral populations at the genome level remain unexplored. Here we followed the viral community in a freshwater lake for 1 year using genome-resolved viral metagenomics, combined with detailed analyses of the viral community structure, associated bacterial populations and environmental variables. We reconstructed 8950 complete and partial viral genomes, the majority of which were not persistent in the lake throughout the year, but instead continuously succeeded each other. Temporal analysis of 732 viral genus-level clusters demonstrated that one-fifth were undetectable at specific periods of the year. Based on host predictions for a subset of reconstructed viral genomes, we for the first time reveal three distinct patterns of host-pathogen dynamics, where the viruses may peak before, during or after the peak in their host's abundance, providing new possibilities for modelling of their interactions. Time series metagenomics opens up a new dimension in viral profiling, which is essential to understand the full scale of viral diversity and evolution, and the ecological roles of these important factors in the global ecosystem.
Collapse
Affiliation(s)
- Ksenia Arkhipova
- School of Biological Sciences, The Queen's University of Belfast, Belfast, UK.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Timofey Skvortsov
- School of Biological Sciences, The Queen's University of Belfast, Belfast, UK.,Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - John P Quinn
- School of Biological Sciences, The Queen's University of Belfast, Belfast, UK
| | - John W McGrath
- School of Biological Sciences, The Queen's University of Belfast, Belfast, UK.,Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Christopher Cr Allen
- School of Biological Sciences, The Queen's University of Belfast, Belfast, UK.,Institute for Global Food Security, The Queen's University of Belfast, Belfast, UK
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Leonid A Kulakov
- School of Biological Sciences, The Queen's University of Belfast, Belfast, UK
| |
Collapse
|
9
|
Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship. Viruses 2017; 9:v9040084. [PMID: 28425942 PMCID: PMC5408690 DOI: 10.3390/v9040084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/06/2023] Open
Abstract
Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.
Collapse
|
10
|
Wang X, Liu J, Yu Z, Jin J, Liu X, Wang G. Novel groups of cyanobacterial podovirus DNA polymerase (pol) genes exist in paddy waters in northeast China. FEMS Microbiol Ecol 2016; 92:fiw192. [DOI: 10.1093/femsec/fiw192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 11/12/2022] Open
|
11
|
Dann LM, Rosales S, McKerral J, Paterson JS, Smith RJ, Jeffries TC, Oliver RL, Mitchell JG. Marine and giant viruses as indicators of a marine microbial community in a riverine system. Microbiologyopen 2016; 5:1071-1084. [PMID: 27506856 PMCID: PMC5221468 DOI: 10.1002/mbo3.392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022] Open
Abstract
Viral communities are important for ecosystem function as they are involved in critical biogeochemical cycles and controlling host abundance. This study investigates riverine viral communities around a small rural town that influences local water inputs. Myoviridae, Siphoviridae, Phycodnaviridae, Mimiviridae, Herpesviridae, and Podoviridae were the most abundant families. Viral species upstream and downstream of the town were similar, with Synechoccocus phage, salinus, Prochlorococcus phage, Mimivirus A, and Human herpes 6A virus most abundant, contributing to 4.9-38.2% of average abundance within the metagenomic profiles, with Synechococcus and Prochlorococcus present in metagenomes as the expected hosts for the phage. Overall, the majority of abundant viral species were or were most similar to those of marine origin. At over 60 km to the river mouth, the presence of marine communities provides some support for the Baas-Becking hypothesis "everything is everywhere, but, the environment selects." We conclude marine microbial species may occur more frequently in freshwater systems than previously assumed, and hence may play important roles in some freshwater ecosystems within tens to a hundred kilometers from the sea.
Collapse
Affiliation(s)
- Lisa M Dann
- School of Biological Sciences at Flinders University, Adelaide, South Australia, Australia
| | - Stephanie Rosales
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Jody McKerral
- School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia
| | - James S Paterson
- School of Biological Sciences at Flinders University, Adelaide, South Australia, Australia
| | - Renee J Smith
- School of Biological Sciences at Flinders University, Adelaide, South Australia, Australia
| | - Thomas C Jeffries
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Rod L Oliver
- Land and Water Research Division at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - James G Mitchell
- School of Biological Sciences at Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Quispe CF, Sonderman O, Seng A, Rasmussen B, Weber G, Mueller C, Dunigan DD, Van Etten JL. Three-year survey of abundance, prevalence and genetic diversity of chlorovirus populations in a small urban lake. Arch Virol 2016; 161:1839-47. [PMID: 27068168 DOI: 10.1007/s00705-016-2853-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 11/28/2022]
Abstract
Inland water environments cover about 2.5 percent of our planet and harbor huge numbers of known and still unknown microorganisms. In this report, we examined water samples for the abundance, prevalence, and genetic diversity of a group of infectious viruses (chloroviruses) that infect symbiotic chlorella-like green algae. Samples were collected on a weekly basis for a period of 24 to 36 months from a recreational freshwater lake in Lincoln, Nebraska, and assayed for infectious viruses by plaque assay. The numbers of infectious virus particles were both host- and site-dependent. The consistent fluctuations in numbers of viruses suggest their impact as key factors in shaping microbial community structures in the water surface. Even in low-viral-abundance months, infectious chlorovirus populations were maintained, suggesting either that the viruses are very stable or that there is ongoing viral production in natural hosts.
Collapse
Affiliation(s)
- Cristian F Quispe
- Department of Plant Pathology, Plant Science Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Nebraska Center for Virology, Morrison Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- School of Biological Science, Manter Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Olivia Sonderman
- Nebraska Center for Virology, Morrison Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Anya Seng
- Nebraska Center for Virology, Morrison Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Brenna Rasmussen
- Nebraska Center for Virology, Morrison Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Garrett Weber
- Department of Plant Pathology, Plant Science Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Nebraska Center for Virology, Morrison Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Claire Mueller
- Nebraska Center for Virology, Morrison Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - David D Dunigan
- Department of Plant Pathology, Plant Science Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Nebraska Center for Virology, Morrison Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - James L Van Etten
- Department of Plant Pathology, Plant Science Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Nebraska Center for Virology, Morrison Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|