1
|
Identification of Loci Associated with Enhanced Virulence in Spodoptera litura Nucleopolyhedrovirus Isolates Using Deep Sequencing. Viruses 2019; 11:v11090872. [PMID: 31533344 PMCID: PMC6783950 DOI: 10.3390/v11090872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Spodoptera litura is an emerging pest insect in cotton and arable crops in Central Asia. To explore the possibility of using baculoviruses as biological control agents instead of chemical pesticides, in a previous study we characterized a number of S. litura nucleopolyhedrovirus (SpltNPV) isolates from Pakistan. We found significant differences in speed of kill, an important property of a biological control agent. Here we set out to understand the genetic basis of these differences in speed of kill, by comparing the genome of the fast-killing SpltNPV-Pak-TAX1 isolate with that of the slow-killing SpltNPV-Pak-BNG isolate. These two isolates and the SpltNPV-G2 reference strain from China were deep sequenced with Illumina. As expected, the two Pakistani isolates were closely related with >99% sequence identity, whereas the Chinese isolate was more distantly related. We identified two loci that may be associated with the fast action of the SpltNPV-Pak-TAX1 isolate. First, an analysis of rates of synonymous and non-synonymous mutations identified neutral to positive selection on open reading frame (ORF) 122, encoding a viral fibroblast growth factor (vFGF) that is known to affect virulence in other baculoviruses. Second, the homologous repeat region hr17, a putative enhancer of transcription and origin of replication, is absent in SpltNPV-Pak-TAX1 suggesting it may also affect virulence. Additionally, we found there is little genetic variation within both Pakistani isolates, and we identified four genes under positive selection in both isolates that may have played a role in adaptation of SpltNPV to conditions in Central Asia. Our results contribute to the understanding of the enhanced activity of SpltNPV-Pak-TAX1, and may help to select better SpltNPV isolates for the control of S. litura in Pakistan and elsewhere.
Collapse
|
2
|
Global Analysis of Baculovirus Autographa californica Multiple Nucleopolyhedrovirus Gene Expression in the Midgut of the Lepidopteran Host Trichoplusia ni. J Virol 2018; 92:JVI.01277-18. [PMID: 30209166 DOI: 10.1128/jvi.01277-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a large double-stranded DNA (dsDNA) virus that encodes approximately 156 genes and is highly pathogenic to a variety of larval lepidopteran insects in nature. Oral infection of larval midgut cells is initiated by the occlusion-derived virus (ODV), while secondary infection of other tissues is mediated by the budded virus (BV). Global viral gene expression has been studied in detail in BV-infected cell cultures, but studies of ODV infection in the larval midgut are limited. In this study, we examined expression of the ∼156 AcMNPV genes in Trichoplusia ni midgut tissue using a transcriptomic approach. We analyzed expression profiles of viral genes in the midgut and compared them with profiles from a T. ni cell line (Tnms42). Several viral genes (p6.9, orf76, orf75, pp31, Ac-bro, odv-e25, and odv-ec27) had high expression levels in the midgut throughout the infection. Also, the expression of genes associated with occlusion bodies (polh and p10) appeared to be delayed in the midgut in comparison with the cell line. Comparisons of viral gene expression profiles revealed remarkable similarities between the midgut and cell line for most genes, although substantial differences were observed for some viral genes. These included genes associated with high level BV production (fp-25k), acceleration of systemic infection (v-fgf), and enhancement of viral movement (arif-1/orf20). These differential expression patterns appear to represent specific adaptations for virus infection and transmission through the polarized cells of the lepidopteran midgut.IMPORTANCE Baculoviruses such as AcMNPV are pathogens that are natural regulators of certain insect populations. Baculovirus infections are biphasic, with a primary phase initiated by oral infection of midgut epithelial cells by occlusion-derived virus (ODV) virions and a secondary phase in which other tissues are infected by budded-virus (BV) virions. While AcMNPV infections in cultured cells have been studied extensively, comparatively little is known regarding primary infection in the midgut. In these studies, we identified gene expression patterns associated with ODV-mediated infection of the midgut in Trichoplusia ni and compared those results with prior results from BV-infected cultured cells, which simulate secondary infection. These studies provide a detailed analysis of viral gene expression patterns in the midgut, which likely represent specific viral strategies to (i) overcome or avoid host defenses in the gut and (ii) rapidly move infection from the midgut, into the hemocoel to facilitate systemic infection.
Collapse
|
3
|
Abstract
Receptor tyrosine kinases (RTKs) are essential components of cell communication pathways utilized from the embryonic to adult stages of life. These transmembrane receptors bind polypeptide ligands, such as growth factors, inducing signalling cascades that control cellular processes such as proliferation, survival, differentiation, motility and inflammation. Many viruses have acquired homologs of growth factors encoded by the hosts that they infect. Production of growth factors during infection allows viruses to exploit RTKs for entry and replication in cells, as well as for host and environmental dissemination. This review describes the genetic diversity amongst virus-derived growth factors and the mechanisms by which RTK exploitation enhances virus survival, then highlights how viral ligands can be used to further understanding of RTK signalling and function during embryogenesis, homeostasis and disease scenarios.
Collapse
Affiliation(s)
- Zabeen Lateef
- a Department of Pharmacology and Toxicology, School of Biomedical Sciences , University of Otago , Dunedin , New Zealand
| | - Lyn M Wise
- a Department of Pharmacology and Toxicology, School of Biomedical Sciences , University of Otago , Dunedin , New Zealand
| |
Collapse
|
4
|
The Functional Oligomeric State of Tegument Protein GP41 Is Essential for Baculovirus Budded Virion and Occlusion-Derived Virion Assembly. J Virol 2018; 92:JVI.02083-17. [PMID: 29643237 DOI: 10.1128/jvi.02083-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/31/2018] [Indexed: 12/18/2022] Open
Abstract
gp41, one of the baculovirus core genes, encodes the only recognized tegument (O-glycosylated) protein of the occlusion-derived virion (ODV) phenotype so far. A previous study using a temperature-sensitive Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) mutant showed that GP41 plays a crucial role in budded virion (BV) formation. However, the precise function of GP41 in the baculovirus replication cycle remains unclear. In this study, AcMNPV GP41 was found to accumulate around the ring zone (RZ) region within the infected nucleus and finally assembled into both BVs and ODVs. Deletion of gp41 from the AcMNPV genome showed that BVs were no longer formed and ODVs were no longer assembled, suggesting the essential role of this gene in baculovirus virion morphogenesis. In infected cells, besides the 42-kDa monomers, dimers and trimers were detected under nonreducing conditions, whereas only trimeric GP41 forms were selectively incorporated into BVs or ODVs. Mutations of all five cysteines in GP41 individually had minor effects on GP41 oligomer formation, albeit certain mutations impaired infectious BV production, suggesting flexibility in the intermolecular disulfide bonding. Single mutations of key leucines within two predicted leucine zipper-like motifs did not interfere with GP41 oligomerization or BV and ODV formation, but double leucine mutations completely blocked oligomerization of GP41 and progeny BV production. In the latter case, the usual subcellular localization, especially RZ accumulation, of GP41 was abolished. The above findings clearly point out a close correlation between GP41 oligomerization and function and therefore highlight the oligomeric state as the functional form of GP41 in the baculovirus replication cycle.IMPORTANCE The tegument, which is sandwiched between the nucleocapsid and the virion envelope, is an important substructure of many enveloped viruses. It is composed of one or more proteins that have important functions during virus entry, replication, assembly, and egress. Unlike another large DNA virus (herpesvirus) that encodes an extensive set of tegument components, baculoviruses very likely exploit the major tegument protein, GP41, to execute functions in baculovirus virion morphogenesis and assembly. However, the function of this O-glycosylated baculovirus tegument protein remains largely unknown. In this study, we identified trimers as the functional structure of GP41 in baculovirus virion morphogenesis and showed that both disulfide bridging and protein-protein interactions via the two leucine zipper-like domains are involved in the formation of different oligomeric states. This study advances our understanding of the unique viral tegument protein GP41 participating in the life cycle of baculoviruses.
Collapse
|
5
|
Wang X, Chen C, Zhang N, Li J, Deng F, Wang H, Vlak JM, Hu Z, Wang M. The group I alphabaculovirus-specific protein, AC5, is a novel component of the occlusion body but is not associated with ODVs or the PIF complex. J Gen Virol 2018; 99:585-595. [PMID: 29465345 DOI: 10.1099/jgv.0.001031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autographa californica nucleopolyhedrovirus (AcMNPV) orf5 (ac5) is a group I alphabaculovirus-specific gene of unknown function, although the protein (AC5) was previously reported to be associated with the per os infectivity factor (PIF) complex. The purpose of this study was to study the dynamics of AC5 during AcMNPV infection and to verify whether it is indeed a component of the PIF complex. Transcription and expression analyses suggested that ac5 is a late viral gene. An ac5-deleted recombinant AcMNPV was generated by homologous recombination. A one-step growth curve assay indicated that ac5 was not required for budded virus (BV) production in Sf9 cells. Scanning electron microscopy and transmission electron microscopy demonstrated that the deletion of ac5 did not affect occlusion body (OB) morphology, and nor did it affect the insertion of occlusion-derived virus (ODV) into OBs. Partially denaturing SDS-PAGE and a co-immunoprecipitation assay clearly showed that AC5 was not a component of the PIF complex, while the deletion of ac5 did not affect the formation and presence of the PIF complex. Further analyses showed, however, that AC5 was an OB-specific protein, but it was not detected as a component of BVs or ODVs. Bioassay experiments showed that the oral infectivity of ac5-deleted AcMNPV to third instar Spodoptera exigua larvae was not significantly different from that of the ac5-repaired virus. In conclusion, AC5 is an intrinsic protein of OBs, instead of being a component of the PIF complex, and is not essential for either BV or ODV infection. AC5 is awaiting the assignment of another hitherto unknown function.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cheng Chen
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Nan Zhang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiang Li
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Fei Deng
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hualin Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Zhihong Hu
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Manli Wang
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
6
|
Wang M, Shen S, Wang H, Hu Z, Becnel J, Vlak JM. Deltabaculoviruses encode a functional type I budded virus envelope fusion protein. J Gen Virol 2017; 98:847-852. [PMID: 28452294 DOI: 10.1099/jgv.0.000745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Envelope fusion proteins (F proteins) are major constituents of budded viruses (BVs) of alpha- and betabaculoviruses (Baculoviridae) and are essential for the systemic infection of insect larvae and insect cell culture. An f homologue gene is absent in gammabaculoviruses. Here we characterized the putative F-homologue (Cuni-F), encoded by (ORF) 104 of Culex nigripalpus nucleopolyhedrovirus (CuniNPV), the only deltabaculovirus member. When expressed alone, this protein seems to locate on the cell surface and is able to induce cell-cell fusion. When expressed by an alphabaculovirus (Autographa california nucleopolyhedrovirus), it was found to be incorporated into BVs. Western blot analyses detected the uncleaved Cuni-F0 and the furin-cleaved F1 forms. Treatment of infected cells with tunicamycin showed that Cuni-F contains N-glycans. Mutagenesis analysis identified the canonical furin cleavage site 126RARR129 as being responsible for the cleavage of Cuni-F in insect cells. The collective evidence suggests that CuniNPV encodes a functional F protein.
Collapse
Affiliation(s)
- Manli Wang
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Shu Shen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Hualin Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Zhihong Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - James Becnel
- Center for Medical, Agricultural and Veterinary Entomology, CMAVE (USDA, ARS), Gainesville, Florida, USA
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
Jing Q, Wang Y, Liu H, Deng X, Jiang L, Liu R, Song H, Li J. FGFs: crucial factors that regulate tumour initiation and progression. Cell Prolif 2016; 49:438-47. [PMID: 27383016 DOI: 10.1111/cpr.12275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/13/2016] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) are crucial signalling molecules involved in normal cell growth, differentiation and proliferation. Over the past few decades, a large body of research has illustrated effects of individual FGFs on tumour initiation and progression. Tumour development is commonly accompanied with generation of new blood and lymph vessels, which support enhanced cell proliferation. Moreover, acquisition of tumour cells of the epithelial-mesenchymal transition (EMT) phenotype, enhances tumour cell migration and invasion potentials, crucial steps in tumour metastasis. This review summarizes recent findings concerning roles of FGFs in angiogenesis, lymphangiogenesis and EMT.
Collapse
Affiliation(s)
- Qian Jing
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Wang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Hao Liu
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Xiaowei Deng
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Lin Jiang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haixing Song
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingyi Li
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|