1
|
Jiao M, Danthi P, Yu Y. Cholesterol-Dependent Membrane Deformation by Metastable Viral Capsids Facilitates Entry. ACS Infect Dis 2024; 10:2728-2740. [PMID: 38873897 DOI: 10.1021/acsinfecdis.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Nonenveloped viruses employ unique entry mechanisms to breach and infect host cells. Understanding these mechanisms is crucial for developing antiviral strategies. Prevailing perspective suggests that nonenveloped viruses release membrane pore-forming peptides to breach host membranes. However, the precise involvement of the viral capsid in this entry remains elusive. Our study presents direct observations elucidating the dynamically distinctive steps through which metastable reovirus capsids disrupt host lipid membranes as they uncoat into partially hydrophobic intermediate particles. Using both live cells and model membrane systems, our key finding is that reovirus capsids actively deform and permeabilize lipid membranes in a cholesterol-dependent process. Unlike membrane pore-forming peptides, these metastable viral capsids induce more extensive membrane perturbations, including budding, bridging between adjacent membranes, and complete rupture. Notably, cholesterol enhances subviral particle adsorption, resulting in the formation of pores equivalent to the capsid size. This cholesterol dependence is attributed to the lipid condensing effect, particularly prominent at an intermediate cholesterol level. Furthermore, our results reveal a positive correlation between membrane disruption extent and efficiency of viral variants in establishing infection. This study unveils the crucial role of capsid-lipid interaction in nonenveloped virus entry, providing new insights into how cholesterol homeostasis influences virus infection dynamics.
Collapse
Affiliation(s)
- Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
2
|
Zhao K, Zhang S, Liu X, Guo X, Guo Z, Zhang X, Yuan W. The game between host antiviral innate immunity and immune evasion strategies of senecavirus A - A cell biological perspective. Front Immunol 2022; 13:1107173. [PMID: 36618383 PMCID: PMC9813683 DOI: 10.3389/fimmu.2022.1107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of the cellular host to defend against viral infection. Upon infection, viruses can be sensed by the cellular host's pattern recognition receptors (PRRs), leading to the activation of the signaling cascade and the robust production of interferons (IFNs) to restrict the infection and replication of the viruses. However, numerous cunning viruses have evolved strategies to evade host innate immunity. The senecavirus A (SVA) is a newly identified member of the Picornaviridae family, causing severe vesicular or ulcerative lesions on the oral mucosa, snout, coronary bands, and hooves of pigs of different ages. During SVA infection, the cellular host will launch the innate immune response and various physiological processes to restrict SVA. In contrast, SVA has evolved several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by SVA to evade pattern recognition receptor signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR) signaling pathway, interferon-stimulated genes (ISGs) and autophagy, and stress granules. Deciphering the antiviral immune evasion mechanisms by SVA will enhance our understanding of SVA's pathogenesis and provide insights into developing antiviral strategies and improving vaccines.
Collapse
Affiliation(s)
- Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China,Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Shixia Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaona Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaoran Guo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zhaomeng Guo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China,*Correspondence: Wanzhe Yuan, ; Xiaozhan Zhang,
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China,Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China,*Correspondence: Wanzhe Yuan, ; Xiaozhan Zhang,
| |
Collapse
|
3
|
Oxysterols in the Immune Response to Bacterial and Viral Infections. Cells 2022; 11:cells11020201. [PMID: 35053318 PMCID: PMC8773517 DOI: 10.3390/cells11020201] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/08/2023] Open
Abstract
Oxidized cholesterols, the so-called oxysterols, are widely known to regulate cholesterol homeostasis. However, more recently oxysterols have emerged as important lipid mediators in the response to both bacterial and viral infections. This review summarizes our current knowledge of selected oxysterols and their receptors in the control of intracellular bacterial growth as well as viral entry into the host cell and viral replication. Lastly, we briefly discuss the potential of oxysterols and their receptors as drug targets for infectious and inflammatory diseases.
Collapse
|