1
|
Khatun MN, Tasnim S, Hossain MR, Rahman MZ, Hossain MT, Chowdhury EH, Parvin R. Molecular epidemiology of avian influenza viruses and avian coronaviruses in environmental samples from migratory bird inhabitants in Bangladesh. Front Vet Sci 2024; 11:1446577. [PMID: 39434717 PMCID: PMC11491338 DOI: 10.3389/fvets.2024.1446577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Migratory birds are a natural reservoir for major respiratory viruses such as the avian influenza virus (AIV) and the avian coronavirus (AvCoV). Transmission of these viruses from migratory birds to domestic birds increases the prevalence of those diseases that cause severe economic and public health concerns in Bangladesh. The study focused on active surveillance of major respiratory viral pathogens in migratory birds, molecular identification of the viruses, and their phylogenetic origin. To conduct this study, 850 environmental samples (830 fecal samples, 10 soil samples, and 10 water samples) were collected during three consecutive winter seasons from three divisions (Dhaka, Sylhet, and Mymensingh) and pooled according to the year of collection and locations, resulting in a total of 184 tested samples. Using gene-specific primers and probes in TaqMan-and SYBR Green-based RT-qPCR assays, the samples were screened for AIV and AvCoV, respectively. Out of the 184 pooled samples, 37 were found to be positive for these respiratory pathogens. Furthermore, out of the 37 (20.11%) positive respiratory pathogens, 11.96% were AIV (n = 22) and 8.15% were AvCoV (n = 15). For the first time in Bangladesh, AIV H4N2, H4N6, and AvCoVs have been found in fecal samples from migratory birds through surveillance. Phylogenetic analyses of the HA and NA genes of AIV and the polymerase gene (Orf 1) of AvCoV revealed that these strains share a close phylogenetic relationship with the isolates from wild birds in Europe and Asia. The Bangladeshi strains with Eurasian ancestry might pose a significant threat to migratory birds flying through the Asian flyways. They might also be a potential source of virus introduction and spread to poultry raised on land. These findings emphasize the significance of ongoing AIV and AvCoV surveillance in migratory birds in Bangladesh.
Collapse
Affiliation(s)
- Most. Nahida Khatun
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shadia Tasnim
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Riabbel Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ziaur Rahman
- Molecular Radiobiology and Biodosimetry Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Dhaka, Bangladesh
| | - Md. Tofazzal Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Domańska-Blicharz K, Miłek-Krupa J, Pikuła A. Gulls as a host for both gamma and deltacoronaviruses. Sci Rep 2023; 13:15104. [PMID: 37704675 PMCID: PMC10499781 DOI: 10.1038/s41598-023-42241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
The coronaviruses (CoV) are ubiquitous pathogens found in wide variety of hosts that constantly pose a threat to human and animal health as a result of their enormous capacity to generate genetic changes. Constant monitoring of virus reservoirs can constitute an early-warning tool and control the spread and evolution of the virus. Coronaviruses are common in wild birds, globally, and birds of the Charadriiformes in particular have been demonstrated to be carriers of delta- (dCoV) and gammacoronaviruses (gCoV). In this paper, we present the genetic characterisation of five CoV strains from black-headed (Chroicocephalus ridibundus) and common (Larus canus) gulls. Whole genome sequence analysis showed high similarity of detected dCoV in gulls to previously identified strains from falcon, houbara, pigeon and gulls from Asia (UAE, China). However, phylogenetic analysis revealed bifurcation within a common branch. Furthermore, the accumulation of numerous amino acid changes within the S-protein was demonstrated, indicating further evolution of dCoV within a single gull host. In turn, phylogenetic analysis for the most of the structural and non-structural genes of identified gCoV confirmed that the strain belongs to the duck coronavirus 2714 (DuCoV2714) species within Igacovirus subgenera, while for the spike protein it forms a separate branch not closely related to any gCoV species known to date. The current study provides new and significant insights into the evolution and diversification of circulating coronaviruses in members of Laridae family.
Collapse
Affiliation(s)
- Katarzyna Domańska-Blicharz
- Department of Poultry Diseases, National Veterinary Research Institute, al. Partyzantow 57, 24-100, Pulawy, Poland.
| | - Justyna Miłek-Krupa
- Department of Poultry Diseases, National Veterinary Research Institute, al. Partyzantow 57, 24-100, Pulawy, Poland
- Holy Cross Cancer Center, Stefana Artwińskiego 3, 25-734, Kielce, Poland
| | - Anna Pikuła
- Department of Poultry Diseases, National Veterinary Research Institute, al. Partyzantow 57, 24-100, Pulawy, Poland
| |
Collapse
|
3
|
Zhu W, Huang Y, Gong J, Dong L, Yu X, Chen H, Li D, Zhou L, Yang J, Lu S. A Novel Bat Coronavirus with a Polybasic Furin-like Cleavage Site. Virol Sin 2023:S1995-820X(23)00047-0. [PMID: 37141989 PMCID: PMC10151251 DOI: 10.1016/j.virs.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
The current pandemic of COVID-19 caused by a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), threatens human health around the world. Of particular concern is that bats are recognized as one of the most potential natural hosts of SARS-CoV-2; however, coronavirus ecology in bats is still nascent. Here, we performed a degenerate primer screening and next-generation sequencing analysis of 112 bats, collected from Hainan Province, China. Three coronaviruses, namely bat betacoronavirus (Bat CoV) CD35, Bat CoV CD36 and bat alphacoronavirus CD30 were identified. Bat CoV CD35 genome had 99.5% identity with Bat CoV CD36, both sharing the highest nucleotide identity with Bat Hp-betacoronavirus Zhejiang2013 (71.4%), followed by SARS-CoV-2 (54.0%). Phylogenetic analysis indicated that Bat CoV CD35 formed a distinct clade, and together with Bat Hp-betacoronavirus Zhejiang2013, was basal to the lineage of SARS-CoV-1 and SARS-CoV-2. Notably, Bat CoV CD35 harbored a canonical furin-like S1/S2 cleavage site that resembles the corresponding sites of SARS-CoV-2. The furin cleavage sites between CD35 and CD36 are identical. In addition, the receptor-binding domain of Bat CoV CD35 showed a highly similar structure to that of SARS-CoV-1 and SARS-CoV-2, especially in one binding loop. In conclusion, this study deepens our understanding of the diversity of coronaviruses and provides clues about the natural origin of the furin cleavage site of SARS-CoV-2.
Collapse
Affiliation(s)
- Wentao Zhu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jian Gong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lingzhi Dong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaojie Yu
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Haiyun Chen
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Dandan Li
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Libo Zhou
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
4
|
Description of Corynebacterium poyangense sp. nov., isolated from the feces of the greater white-fronted geese (Anser albifrons). J Microbiol 2022; 60:668-677. [PMID: 35614376 PMCID: PMC9132169 DOI: 10.1007/s12275-022-2089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022]
Abstract
Two novel Gram-positive, non-spore-forming, facultatively anaerobic, non-motile, and short rods to coccoid strains were isolated from the feces of the greater white-fronted geese (Anser albifrons) at Poyang Lake. The 16S rRNA gene sequences of strains 4H37-19T and 3HC-13 shared highest identity to that of Corynebacterium uropygiale Iso10T (97.8%). Phylogenetic and phylogenomic analyses indicated that strains 4H37-19T and 3HC-13 formed an independent clade within genus Corynebacterium and clustered with Corynebacterium uropygiale Iso10T. The average nucleotide identity and digital DNA-DNA hybridization value between strains 4H37-19T and 3HC-13 and members within genus Corynebacterium were all below 95% and 70%, respectively. The genomic G + C content of strains 4H37-19T and 3HC-13 was 52.5%. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylcholine, and phosphatidyl inositol mannosides (PIM) were the major polar lipids, with C18:1ω9c, C16:0, and C18:0 as the major fatty acids, and MK-8 (H4), MK-8(H2), and MK-9(H2) as the predominant respiratory quinones. The major whole cell sugar was arabinose, and the cell wall included mycolic acids. The cell wall peptidoglycan contained meso-diaminopimelic acid (meso-DAP). The polyphasic taxonomic data shows that these two strains represent a novel species of the genus Corynebacterium, for which the name Corynebacterium poyangense sp. nov. is proposed. The type strain of Corynebacterium poyangense is 4H37-19T (=GDMCC 1.1738T = KACC 21671T).
Collapse
|
5
|
Zhu W, Yang J, Lu S, Jin D, Pu J, Wu S, Luo XL, Liu L, Li Z, Xu J. RNA Virus Diversity in Birds and Small Mammals From Qinghai–Tibet Plateau of China. Front Microbiol 2022; 13:780651. [PMID: 35250920 PMCID: PMC8894885 DOI: 10.3389/fmicb.2022.780651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Most emerging and re-emerging viruses causing infectious diseases in humans and domestic animals have originated from wildlife. However, current knowledge of the spectrum of RNA viruses in the Qinghai-Tibet Plateau in China is still limited. Here, we performed metatranscriptomic sequencing on fecal samples from 56 birds and 91 small mammals in Tibet and Qinghai Provinces, China, to delineate their viromes and focused on vertebrate RNA viruses. A total of 184 nearly complete genome RNA viruses belonging to 28 families were identified. Among these, 173 new viruses shared <90% amino acid identity with previously known viral sequences. Several of these viruses, such as those belonging to genera Orthonairovirus and Hepatovirus, could be zoonotic viruses. In addition, host taxonomy and geographical location of these viruses showed new hosts and distribution of several previously discovered viruses. Moreover, 12 invertebrate RNA viruses were identified with <40% amino acid identity to known viruses, indicating that they belong to potentially new taxa. The detection and characterization of RNA viruses from wildlife will broaden our knowledge of virus biodiversity and possible viral diseases in the Qinghai–Tibet Plateau.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Shusheng Wu
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, China
| | - Xue-Lian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Research Institute of Public Heath, Nankai University, Tianjin, China
- *Correspondence: Jianguo Xu,
| |
Collapse
|
6
|
Zhu W, Huang Y, Yu X, Chen H, Li D, Zhou L, Huang Q, Liu L, Yang J, Lu S. Discovery and Evolutionary Analysis of a Novel Bat-Borne Paramyxovirus. Viruses 2022; 14:288. [PMID: 35215881 PMCID: PMC8879077 DOI: 10.3390/v14020288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Paramyxoviruses are a group of RNA viruses, such as mumps virus, measles virus, Nipah virus, Hendra virus, Newcastle disease virus, and parainfluenza virus, usually transmitted by airborne droplets that are predominantly responsible for acute respiratory diseases. In this paper, we identified a novel paramyxovirus belonging to genus Jeilongvirus infecting 4/112 (3.6%) bats from two trapping sites of Hainan Province of China. In these animals, the viral RNA was detected exclusively in kidney tissues. This is the first full-length Jeilongvirus genome (18,095 nucleotides) from bats of genus Hipposideros, which exhibits a canonical genome organization and encodes SH and TM proteins. Results, based on phylogenic analysis and genetic distances, indicate that the novel paramyxovirus formed an independent lineage belonging to genus Jeilongvirus, representing, thus, a novel species. In addition, the virus-host macro-evolutionary analysis revealed that host-switching was not only a common co-phylogenetic event, but also a potential mechanism by which rats are infected by bat-origin Jeilongvirus through cross-species virus transmission, indicating a bat origin of the genus Jeilongvirus. Overall, our study broadens the viral diversity, geographical distribution, host range, and evolution of genus Jeilongvirus.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Xiaojie Yu
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Haiyun Chen
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Dandan Li
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Libo Zhou
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Qianni Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
7
|
Zhu W, Yang J, Lu S, Huang Y, Jin D, Pu J, Liu L, Li Z, Shi M, Xu J. Novel pegiviruses infecting wild birds and rodents. Virol Sin 2022; 37:208-214. [PMID: 35234631 PMCID: PMC9170927 DOI: 10.1016/j.virs.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Pegivirus (family Flaviviridae) is a genus of small enveloped RNA viruses that mainly causes blood infections in various mammals including human. Herein, we carried out an extensive survey of pegiviruses from a wide range of wild animals mainly sampled in the Qinghai-Tibet Plateau of China. Three novel pegiviruses, namely Passer montanus pegivirus, Leucosticte brandti pegivirus and Montifringilla taczanowskii pegivirus, were identified from different wild birds, and one new rodent pegivirus, namely Phaiomys leucurus pegivirus, was identified from Blyth's vole. Interestingly, the pegiviruses of non-mammalian origin discovered in this study substantially broaden the host range of Pegivirus to avian species. Co-evolutionary analysis showed virus-host co-divergence over long evolutionary timescales, and indicated that pegiviruses largely followed a virus-host co-divergence relationship. Overall, this work extends the biodiversity of the Pegivirus genus to those infecting wild birds and hence revises the host range and evolutionary history of genus Pegivirus. Novel pegiviruses were identified from wild-life animals in Qinghai-Tibet Plateau. The three divergent species of bird pegiviruses substantially broaden the host range of Pegivirus. A long-term evolutionary relationship was established between pegiviruses and their vertebrate hosts.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Shenzhen, 510006, China.
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, 100730, China; Research Institute of Public Heath, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Zhu W, Yang J, Lu S, Jin D, Wu S, Pu J, Luo XL, Liu L, Li Z, Xu J. Discovery and Evolution of a Divergent Coronavirus in the Plateau Pika From China That Extends the Host Range of Alphacoronaviruses. Front Microbiol 2021; 12:755599. [PMID: 34691006 PMCID: PMC8529330 DOI: 10.3389/fmicb.2021.755599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Although plateau pikas are the keystone species in the plateau ecosystem of the Qinghai Province of China, little is known about their role in the evolution and transmission of viral pathogens, especially coronaviruses. Here, we describe the characterization and evolution of a novel alphacoronavirus, termed plateau pika coronavirus (PPCoV) P83, which has a prevalence of 4.5% in plateau pika fecal samples. In addition to classical gene order, the complete viral genome contains a unique nonstructural protein (NS2), several variable transcription regulatory sequences and a highly divergent spike protein. Phylogenetic analysis indicates that the newly discovered PPCoV falls into the genus Alphacoronavirus and is most closely related to rodent alphacoronaviruses. The co-speciation analysis shows that the phylogenetic trees of the alphacoronaviruses and their hosts are not always matched, suggesting inter-species transmission is common in alphacoronaviruses. And, PPCoV origin was estimated by molecular clock based on membrane and RNA-dependent RNA polymerase encoding genes, respectively, which revealed an apparent discrepancy with that of co-speciation analysis. PPCoV was detected mainly in intestinal samples, indicating a potential enteric tropism for the virus. Overall, this study extends the host range of alphacoronaviruses to a new order (Lagomorpha), indicating that plateau pikas may be the natural reservoir of PPCoV and play an important and long-term role in alphacoronavirus evolution.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shusheng Wu
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xue-Lian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Research Institute of Public Heath, Nankai University, Tianjin, China
| |
Collapse
|