1
|
Wan G, Khattab S, Leung BW, Zhang S, Nguyen N, Tran M, Lin C, Chang C, Alexander N, Jairath R, Phillipps J, Tang K, Rajeh A, Zubiri L, Chen ST, Demehri S, Yu KH, Gusev A, Kwatra SG, LeBoeuf NR, Reynolds KL, Semenov YR. Cancer type and histology influence cutaneous immunotherapy toxicities: a multi-institutional cohort study. Br J Dermatol 2024; 191:117-124. [PMID: 38366637 PMCID: PMC11188738 DOI: 10.1093/bjd/ljae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Cutaneous immune-related adverse events (cirAEs) are the most common toxicities to occur in the setting of immune checkpoint inhibitor (ICI) therapy. Identifying patients who are at increased risk of developing cirAEs may improve quality of life and outcomes. OBJECTIVES To investigate the influence of cancer type and histology on the development of cirAEs in the setting of ICI therapy and survival outcomes. METHODS This retrospective cohort study included patients recruited between 1 December 2011 and 30 October 2020. They received ICI from 2011 to 2020 with follow-up of outcomes through October 2021. We identified 3668 recipients of ICI therapy who were seen at Massachusetts General Brigham and Dana-Farber. Of these, 669 developed cirAEs. Records that were incomplete or categories of insufficient sample size were excluded from the study cohort. Multivariate Cox proportional hazards models were used to investigate the impact of cancer organ system and histology on cirAE development, after adjusting for demographics, Charlson Comorbidity Index, ICI type, cancer stage at ICI initiation, and year of ICI initiation. Time-varying Cox proportional hazards modelling was used to examine the impact of cirAE development on mortality. RESULTS Compared with other nonepithelial cancers (neuroendocrine, leukaemia, lymphoma, myeloma, sarcoma and central nervous system malignancies), cutaneous squamous cell carcinoma [cSCC; hazard ratio (HR) 3.57, P < 0.001], melanoma (HR 2.09, P < 0.001), head and neck adenocarcinoma (HR 2.13, P = 0.009), genitourinary transitional cell carcinoma (HR 2.15, P < 0.001) and genitourinary adenocarcinoma (HR 1.53, P = 0.037) were at significantly higher risk of cirAEs in multivariate analyses. The increased risk of cirAEs translated into an adjusted survival benefit for melanoma (HR 0.37, P < 0.001) and cSCC (HR 0.51, P = 0.011). CONCLUSIONS The highest rate of cirAEs and subsequent survival benefits were observed in cutaneous malignancies treated with ICI therapies. This study improves our understanding of patients who are at highest risk of developing cirAEs and would, therefore, benefit from appropriate counselling and closer monitoring by their oncologists and dermatologists throughout their ICI therapy. Limitations include its retrospective nature and cohort from one geography.
Collapse
Affiliation(s)
- Guihong Wan
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sara Khattab
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Bonnie W. Leung
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA
- Center for Cutaneous Oncology, Department of Dermatology, Dana-Farber Cancer Institute, Boston, MA
| | - Shijia Zhang
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Nga Nguyen
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Matthew Tran
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Chuck Lin
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Crystal Chang
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Nora Alexander
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Ruple Jairath
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Jordan Phillipps
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Kimberly Tang
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Ahmad Rajeh
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Leyre Zubiri
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Steven T. Chen
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Shadmehr Demehri
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | | | - Alexander Gusev
- Center for Cutaneous Oncology, Department of Dermatology, Dana-Farber Cancer Institute, Boston, MA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole R. LeBoeuf
- Harvard Medical School, Boston, MA
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA
- Center for Cutaneous Oncology, Department of Dermatology, Dana-Farber Cancer Institute, Boston, MA
| | - Kerry L. Reynolds
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Yevgeniy R. Semenov
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Yoshie O. CCR4 as a Therapeutic Target for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13215542. [PMID: 34771703 PMCID: PMC8583476 DOI: 10.3390/cancers13215542] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary CCR4 is a chemokine receptor selectively expressed on normal T cell subsets such as type 2 helper T cells, skin-homing T cells and regulatory T cells, and on skin-associated T cell malignancies such as adult T cell leukemia/lymphoma (ATLL), which is etiologically associated with human T lymphocyte virus type 1 (HTLV-1), and cutaneous T cell lymphomas (CTCLs). Mogamulizumab is a fully humanized and glyco-engineered monoclonal anti-CCR4 antibody used for the treatment of refractory/relapsed ATLL and CTCLs, often resulting in complete remission. The clinical applications of Mogamulizumab are now being extended to solid tumors, exploring the therapeutic effect of regulatory T cell depletion. This review overviews the expression of CCR4 in various T cell subsets, HTLV-1-infected T cells, ATLL and CTCLs, and the clinical applications of Mogamulizumab. Abstract CCR4 is a chemokine receptor mainly expressed by T cells. It is the receptor for two CC chemokine ligands, CCL17 and CCL22. Originally, the expression of CCR4 was described as highly selective for helper T type 2 (Th2) cells. Later, its expression was extended to other T cell subsets such as regulatory T (Treg) cells and Th17 cells. CCR4 has long been regarded as a potential therapeutic target for allergic diseases such as atopic dermatitis and bronchial asthma. Furthermore, the findings showing that CCR4 is strongly expressed by T cell malignancies such as adult T cell leukemia/lymphoma (ATLL) and cutaneous T cell lymphomas (CTCLs) have led to the development and clinical application of the fully humanized and glyco-engineered monoclonal anti-CCR4 Mogamulizumab in refractory/relapsed ATLL and CTCLs with remarkable successes. However, Mogamulizumab often induces severe adverse events in the skin possibly because of its efficient depletion of Treg cells. In particular, treatment with Mogamulizumab prior to allogenic hematopoietic stem cell transplantation (allo-HSCT), the only curative option of these T cell malignancies, often leads to severe glucocorticoid-refractory graft-versus-host diseases. The efficient depletion of Treg cells by Mogamulizumab has also led to its clinical trials in advanced solid tumors singly or in combination with immune checkpoint inhibitors. The main focus of this review is CCR4; its expression on normal and malignant T cells and its significance as a therapeutic target in cancer immunotherapy.
Collapse
Affiliation(s)
- Osamu Yoshie
- Health and Kampo Institute, Sendai 981-3205, Japan;
- Kindai University, Osaka 577-8502, Japan
- Aoinosono-Sendai Izumi Long-Term Health Care Facility, Sendai 981-3126, Japan
| |
Collapse
|
3
|
Sernicola A, Russo I, Silic-Benussi M, Ciminale V, Alaibac M. Targeting the cutaneous lymphocyte antigen (CLA) in inflammatory and neoplastic skin conditions. Expert Opin Biol Ther 2020; 20:275-282. [PMID: 31951753 DOI: 10.1080/14712598.2020.1715937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: The cutaneous lymphocyte antigen interacts with E-selectin on endothelial cells and is expressed on 15% of circulating T-cells. Skin-homing T-cells express the cutaneous lymphocyte antigen and play a role in local cutaneous immunity in inflammatory reactions and neoplastic conditions.Areas covered: Lymphocyte extravasation is the essential para-physiological mechanism enabling immune surveillance of tissues for tumors as well as effector cell recruitment to inflammatory sites.The authors focused on skin inflammatory disorders, on cutaneous lymphoproliferative disease, and on other skin malignancies.Expert opinion: Interfering with leukocyte extravasation has been regarded as an attractive strategy in skin disorders, in the past for inflammatory conditions and more recently for cutaneous T-cell lymphomas. Therapeutic blocking of skin-homing interactions has been attempted in psoriasis and atopic dermatitis and has been achieved in the treatment of cutaneous T-cell lymphomas. Cutaneous lymphocyte antigen is a potential molecular target for both systemic and skin-directed therapy for cutaneous T-cell lymphomas.
Collapse
Affiliation(s)
| | - Irene Russo
- Unit of Dermatology, University of Padua, Padova, Italy
| | - Micol Silic-Benussi
- Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Vincenzo Ciminale
- Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Padova, Italy
| |
Collapse
|
4
|
Collignon E, Canale A, Al Wardi C, Bizet M, Calonne E, Dedeurwaerder S, Garaud S, Naveaux C, Barham W, Wilson A, Bouchat S, Hubert P, Van Lint C, Yull F, Sotiriou C, Willard-Gallo K, Noel A, Fuks F. Immunity drives TET1 regulation in cancer through NF-κB. SCIENCE ADVANCES 2018; 4:eaap7309. [PMID: 29938218 PMCID: PMC6010319 DOI: 10.1126/sciadv.aap7309] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/09/2018] [Indexed: 05/27/2023]
Abstract
Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.
Collapse
Affiliation(s)
- Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Annalisa Canale
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)–Cancer, University of Liège, Liège, Belgium
| | - Clémence Al Wardi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Soizic Garaud
- Molecular Immunology Unit, Institut Jules Bordet, ULB, Brussels, Belgium
| | - Céline Naveaux
- Molecular Immunology Unit, Institut Jules Bordet, ULB, Brussels, Belgium
| | - Whitney Barham
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrew Wilson
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology, U-CRC, ULB, Gosselies, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology, U-CRC, ULB, Gosselies, Belgium
| | - Fiona Yull
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Jules Bordet Institute, ULB, Brussels, Belgium
| | | | - Agnès Noel
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)–Cancer, University of Liège, Liège, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| |
Collapse
|
5
|
Jensen GS, Shah B, Holtz R, Patel A, Lo DC. Reduction of facial wrinkles by hydrolyzed water-soluble egg membrane associated with reduction of free radical stress and support of matrix production by dermal fibroblasts. Clin Cosmet Investig Dermatol 2016; 9:357-366. [PMID: 27789968 PMCID: PMC5072512 DOI: 10.2147/ccid.s111999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective The aim of this study was to evaluate the effects of water-soluble egg membrane (WSEM) on wrinkle reduction in a clinical pilot study and to elucidate specific mechanisms of action using primary human immune and dermal cell-based bioassays. Methods To evaluate the effects of topical application of WSEM (8%) on human skin, an open-label 8-week study was performed involving 20 healthy females between the age of 45 years and 65 years. High-resolution photography and digital analysis were used to evaluate the wrinkle depth in the facial skin areas beside the eye (crow’s feet). WSEM was tested for total antioxidant capacity and effects on the formation of reactive oxygen species by human polymorphonuclear cells. Human keratinocytes (HaCaT cells) were used for quantitative polymerase chain reaction analysis of the antioxidant response element genes Nqo1, Gclm, Gclc, and Hmox1. Evaluation of effects on human primary dermal fibroblasts in vitro included cellular viability and production of the matrix components collagen and elastin. Results Topical use of a WSEM-containing facial cream for 8 weeks resulted in a significant reduction of wrinkle depth (P<0.05). WSEM contained antioxidants and reduced the formation of reactive oxygen species by inflammatory cells in vitro. Despite lack of a quantifiable effect on Nrf2, WSEM induced the gene expression of downstream Nqo1, Gclm, Gclc, and Hmox1 in human keratinocytes. Human dermal fibroblasts treated with WSEM produced more collagen and elastin than untreated cells or cells treated with dbcAMP control. The increase in collagen production was statistically significant (P<0.05). Conclusion The topical use of WSEM on facial skin significantly reduced the wrinkle depth. The underlying mechanisms of this effect may be related to protection from free radical damage at the cellular level and induction of several antioxidant response elements, combined with stimulation of human dermal fibroblasts to secrete high levels of matrix components.
Collapse
Affiliation(s)
| | - Bijal Shah
- Department of Neurobiology, Center for Drug Discovery, Duke University Medical Center, Durham, NC
| | | | - Ashok Patel
- Centre Manufacturing LLC, Eden Prairie, MN, USA
| | - Donald C Lo
- Department of Neurobiology, Center for Drug Discovery, Duke University Medical Center, Durham, NC
| |
Collapse
|
6
|
Ferran M, Romeu ER, Rincón C, Sagristà M, Giménez Arnau AM, Celada A, Pujol RM, Holló P, Jókai H, Santamaria-Babí LF. Circulating CLA+ T lymphocytes as peripheral cell biomarkers in T-cell-mediated skin diseases. Exp Dermatol 2014; 22:439-42. [PMID: 23800052 DOI: 10.1111/exd.12154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2013] [Indexed: 02/05/2023]
Abstract
T lymphocytes expressing the CLA antigen constitute a subset of effector memory lymphocytes that are functionally involved in T-cell-mediated cutaneous diseases. Skin-seeking lymphocytes recirculate between inflamed skin and blood during cutaneous inflammation. Many studies in different T-cell-mediated inflammatory cutaneous diseases have clearly related their pathologic mechanisms to CLA+ T cells. Based on common features of these cells in different cutaneous disorders mediated by T cells, we propose that circulating CLA+T cells could constitute very useful peripheral cellular biomarkers for T-cell-mediated skin diseases.
Collapse
Affiliation(s)
- Marta Ferran
- Department of Dermatology, Hospital del Mar, Research Group in Inflammatory Dermatologic Diseases, IMIM, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Salerno EP, Olson WC, McSkimming C, Shea S, Slingluff CL. T cells in the human metastatic melanoma microenvironment express site-specific homing receptors and retention integrins. Int J Cancer 2014; 134:563-74. [PMID: 23873187 DOI: 10.1002/ijc.28391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 06/20/2013] [Indexed: 01/09/2023]
Abstract
T-cell infiltration into the metastatic melanoma microenvironment (MME) correlates with improved patient survival. However, diffuse infiltration into tumor occurs in only 8% of melanoma metastases. Little is known about mechanisms governing T-cell infiltration into human melanoma metastases or about how those mechanisms may be altered therapeutically. We hypothesized that T cells in the MME would be enriched for chemokine receptors CCR4, CCR5, CXCR3 and homing receptors relevant to the tissue site. Viably cryopreserved single cell suspensions from nineteen melanoma metastases representing three metastatic sites (tumor-infiltrated lymph node, skin and small bowel) were evaluated by multiparameter flow cytometry and compared to benign lymph nodes and peripheral blood mononuclear cells from patients with Stage IIB-IV melanoma. T cells in the melanoma metastases contained large effector memory populations, high proportions of activated, moderately differentiated cells and few regulatory T cells. Site-specific homing was suggested in bowel, with high expression of CCR9. We neither encounter the anticipated enrichment of integrin α4β7 in bowel, cutaneous leukocyte antigen (CLA) in skin, nor integrin α4β1 or receptor CXCR3 in metastatic sites. Retention integrins αEβ7, α1β1 and α2β1 were significantly elevated in metastases. These data suggest limited tissue site-specific homing to human melanoma metastases, but a significant role for retention integrins in maintaining intratumoral T cells. Our findings also raise the possibility that T-cell homing, infiltration, and retention in melanoma metastases may be increased by increasing expression of ligands for CLA, α4β1 and CXCR3 on intratumoral endothelium.
Collapse
Affiliation(s)
- Elise P Salerno
- Division of Surgical Oncology, Department of Surgery, University of Virginia, Charlottesville, VA
| | | | | | | | | |
Collapse
|