1
|
Shen J, Su X, Pan M, Wang Z, Ke Y, Wang Q, Dong J, Duan S. Current insights into the oncogenic roles of lncRNA LINC00355. CANCER INNOVATION 2023; 2:448-462. [PMID: 38125763 PMCID: PMC10730005 DOI: 10.1002/cai2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 07/26/2023] [Indexed: 12/23/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of nonprotein-coding transcripts that are longer than 200 nucleotides. LINC00355 is a lncRNA located on chromosome 13q21.31 and is consistently upregulated in various cancers. It regulates the expression of downstream genes at both transcriptional and posttranscriptional levels, including eight microRNAs (miR-15a-5p, miR-34b-5p, miR-424-5p, miR-1225, miR-217-5p, miR-6777-3p, miR-195, and miR-466) and three protein-coding genes (ITGA2, RAD18, and UBE3C). LINC00355 plays a role in regulating various biological processes such as cell cycle progression, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and metastasis of cancer cells. It is involved in the regulation of the Wnt/β-catenin signaling pathway and p53 signaling pathway. Upregulation of LINC00355 has been identified as a high-risk factor in cancer patients and its increased expression is associated with poorer overall survival, recurrence-free survival, and disease-free survival. LINC00355 upregulation has been linked to several unfavorable clinical characteristics, including advanced tumor node metastasis and World Health Organization stages, reduced Karnofsky Performance Scale scores, increased tumor size, greater depth of invasion, and more extensive lymph node metastasis. LINC00355 induces chemotherapy resistance in cancer cells by regulating five downstream genes, namely HMGA2, ABCB1, ITGA2, WNT10B, and CCNE1 genes. In summary, LINC00355 is a potential oncogene with great potential as a diagnostic marker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Ming Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yufei Ke
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Jingyin Dong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
2
|
Cai F, Chen S, Yu X, Zhang J, Liang W, Zhang Y, Chen Y, Chen S, Hong Y, Yan W, Wang W, Zhang J, Wu Q. Transcription factor GTF2B regulates AIP protein expression in growth hormone-secreting pituitary adenomas and influences tumor phenotypes. Neuro Oncol 2021; 24:925-935. [PMID: 34932801 DOI: 10.1093/neuonc/noab291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Clinically, the low expression of wild-type aryl hydrocarbon receptor-interacting protein (AIP) in patients with sporadic growth hormone (GH)-secreting pituitary adenoma (GHPA) is associated with a more aggressive phenotype. However, the mechanism by which AIP expression is regulated in GHPA remains unclear. Herein, we investigated a transcription factor that regulates AIP expression and explored its role in tumor phenotypes. METHODS General transcription factor IIB (GTF2B) was predicted by several bioinformatic tools to regulate AIP expression transcriptionally. Regulation by GTF2B was evaluated using chromatin immunoprecipitation (ChIP), reverse transcription PCR, luciferase reporter, and western blot experiments in SH-SY5Y cells. Furthermore, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, transwell invasive assay, ELISA, western blot, immunohistochemical staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling were performed to investigate the effects of GTF2B and AIP on tumor cell proliferation, apoptosis, growth hormone secretion, and invasiveness in GH3 cells and mouse xenograft models. Moreover, correlations between GTF2B and AIP expression were explored in GHPA cases. RESULTS ChIP and luciferase reporter studies demonstrated that the regulation of AIP expression by GTF2B was dependent on the intergenic-5' untranslated region element of AIP and the initial residual S65 of GTF2B. In vitro and in vivo experiments indicated that GTF2B regulated AIP expression to impact GHPA phenotype; this was confirmed by data from 33 GHPA cases. CONCLUSIONS We determined the regulation by GTF2B of AIP transcription in GHPA and its impact on tumor phenotype. Our findings suggest that GTF2B may be a potential therapeutic target for GHPA with low AIP expression.
Collapse
Affiliation(s)
- Feng Cai
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Shasha Chen
- Geriatrics, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Xuebin Yu
- Dept. of Neurosurgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), the city of Shaoxing, Zhejiang Province, P.R. China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics, Dept. of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Weiwei Liang
- Endocrinology, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Yan Zhang
- Medical oncology, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Yike Chen
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Sheng Chen
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Yuan Hong
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Wei Yan
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Wei Wang
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Jianmin Zhang
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| | - Qun Wu
- Dept. of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, the city of Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
3
|
A novel melanin complex displayed the affinity to HepG2 cell membrane and nucleus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111923. [PMID: 33641916 DOI: 10.1016/j.msec.2021.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 01/07/2023]
Abstract
Chitosan-melanin complex from Catharsius molossus L. has proven to possess superior pharmaceutical excipient performance and may be the new source of water-soluble protein-free natural melanin. Herein, it was enzymatically hydrolyzed into the chitooligosaccharide-melanin complex (CMC) whose main chemical units were composed of eumelanin and chitooligosaccharides and showed three-layer structures. Additionally, this biomacromolecule could self-assemble into 40 nm nanoparticles (CMC Nps) in a weakly acidic aqueous solution. Interestingly, CMC displayed strong affinity for cell membrane by binding the phosphatidylserine, glycoprotein, glycolipids and glycosaminoglycans accumulated on the surface of tumor cells, notably, CMC Nps could enter cells and mainly target the nucleus by interacting with DNA and/or RNA substrates located around the nucleus to disrupt the proliferation and apoptosis processes. The findings suggest CMC may be the novel material for subcellular organelle targeting of cancer cells.
Collapse
|
4
|
Haas DA, Meiler A, Geiger K, Vogt C, Preuss E, Kochs G, Pichlmair A. Viral targeting of TFIIB impairs de novo polymerase II recruitment and affects antiviral immunity. PLoS Pathog 2018; 14:e1006980. [PMID: 29709033 PMCID: PMC5927403 DOI: 10.1371/journal.ppat.1006980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
Abstract
Viruses have evolved a plethora of mechanisms to target host antiviral responses. Here, we propose a yet uncharacterized mechanism of immune regulation by the orthomyxovirus Thogoto virus (THOV) ML protein through engaging general transcription factor TFIIB. ML generates a TFIIB depleted nuclear environment by re-localizing it into the cytoplasm. Although a broad effect on gene expression would be anticipated, ML expression, delivery of an ML-derived functional domain or experimental depletion of TFIIB only leads to altered expression of a limited number of genes. Our data indicate that TFIIB is critically important for the de novo recruitment of Pol II to promoter start sites and that TFIIB may not be required for regulated gene expression from paused promoters. Since many immune genes require de novo recruitment of Pol II, targeting of TFIIB by THOV represents a neat mechanism to affect immune responses while keeping other cellular transcriptional activities intact. Thus, interference with TFIIB activity may be a favourable site for therapeutic intervention to control undesirable inflammation. Viruses target the innate immune system at critical vulnerability points. Here we show that the orthomyxovirus Thogoto virus impairs activity of general transcription factor IIB (TFIIB). Surprisingly, impairment of TFIIB function does not result in a general inhibition of transcription but in a rather specific impairment of selective genes. Transcriptome and functional analyses intersected with published CHIP-Seq datasets suggest that affected genes require de novo recruitment of the polymerase complex. Since the innate immune system heavily relies on genes that require de novo recruitment of the polymerase complex, targeting of TFIIB represents a neat mechanism to broadly affect antiviral immunity. Conversely, therapeutic targeting of TFIIB may represent a mechanism to limit pathological side effects caused by overshooting immune reactions.
Collapse
Affiliation(s)
- Darya A. Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Arno Meiler
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Katharina Geiger
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Carola Vogt
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Ellen Preuss
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
- * E-mail:
| |
Collapse
|
5
|
Minchenko OH, Tsymbal DO, Minchenko DO, Kubaychuk OO. Hypoxic regulation of MYBL1, MEST, TCF3, TCF8, GTF2B, GTF2F2 and SNAI2 genes expression in U87 glioma cells upon IRE1 inhibition. UKRAINIAN BIOCHEMICAL JOURNAL 2018; 88:52-62. [PMID: 29235836 DOI: 10.15407/ubj88.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We investigated the impact of IRE1/ERN1 (inositol requiring enzyme 1/endoplasmic reticulum to nucleus signaling 1) knockdown on hypoxic regulation of the expression of a subset of proliferation and migration-related genes in U87 glioma cells. It was shown that hypoxia leads to up-regulation of the expression of MEST and SNAI2, to down-regulation – of MYBL1, TCF8 and GTF2F2 genes at the mRNA level in control glioma cells. At the same time hypoxia did not affect the expression of TCF3 and GTF2B transcription factor genes. In turn, inhibition of IRE1 modified the effect of hypoxia on the expression of all studied genes, except MYBL1 and GTF2B. For instance, IRE1 knockdown decreased sensitivity to hypoxia of the expression of MEST, TCF8 and SNAI2 genes and increased sensitivity to hypoxia of GTF2F2 expression. At the same time, IRE1 inhibition introduced sensitivity to hypoxia of the expression of TCF3 gene in glioma cells. The present study demonstrated that the inhibition of IRE1 in glioma cells affected the hypoxic regulation of the expression of studied genes in various directions, though hypoxic conditions did not abolish the effect of IRE1 inhibition on the expression of respective genes. To the contrary, in case of SNAI2, GTF2F2 and MEST hypoxic conditions magnified the effect of IRE1 inhibition on the expression of respective genes in glioma cells.
Collapse
|
6
|
Yan H, Li Z, Shen Q, Wang Q, Tian J, Jiang Q, Gao L. Aberrant expression of cell cycle and material metabolism related genes contributes to hepatocellular carcinoma occurrence. Pathol Res Pract 2017; 213:316-321. [PMID: 28238542 DOI: 10.1016/j.prp.2017.01.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/11/2022]
Abstract
This study aims to deepen our understanding of the molecular mechanism underlying the occurrence of hepatocellular carcinoma (HCC). We first downloaded a gene expression profile dataset GSE29721 (10 HCC and 10 control samples) from Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). Differentially expressed genes (DEGs) were identified by the paired t-test using limma package. Pathway and functional enrichment analyses were performed with DAVID tools. Transcription factors were annotated with TRANSFAC database and tumor associated genes (TAGs) were annotated with TAG and TSGene databases. Protein-protein interaction (PPI) network was conducted using STRING online tool and function module was further identified with BioNet package. Totally, 527 up-regulated DEGs and 587 down-regulated DEGs were identified. GO functional and KEGG pathway enrichment analyses showed that the up-regulated DEGs were mainly related to cell division and cell cycle, while the down-regulated DEGs were largely related to material metabolism, especially secondary metabolism. Proteins encoded by DEGs CDK1, BUB1, CDC20, NCAPG, NDC80, CDCA8, MAD2L1, CCNB1, CCNA2 and BIRC5 were hub genes with high degrees in the PPI network; further module analysis detected a subnetwork consisting of 55 proteins, such as CYP2B6, ACAA1, BHMT and ALDH2. Taken together, aberrant expression of cell cycle related genes (e.g., CDK1, CCNA2, CCNB1, BUB1, MAD2L1 and CDC20) and material metabolism related genes (e.g., CYP2B6, ACAA1, BHMT and ALDH2) may contribute to HCC occurrence.
Collapse
Affiliation(s)
- Hongxian Yan
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan 650000, PR China.
| | - Zhaohui Li
- Secondary Department of General Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471003, PR China
| | - Quan Shen
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan 650000, PR China
| | - Qian Wang
- Department of Hepatobiliary Surgery, Henan Cancer Hospital, Zhengzhou, Henan 650000, PR China
| | - Jianguo Tian
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan 650000, PR China
| | - Qingfeng Jiang
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan 650000, PR China
| | - Linbo Gao
- Laboratory of Molecular and Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
7
|
Kim B, Bae H, Lee H, Lee S, Park JC, Kim KR, Kim SJ. Proton Beams Inhibit Proliferation of Breast Cancer Cells by Altering DNA Methylation Status. J Cancer 2016; 7:344-52. [PMID: 26918048 PMCID: PMC4747889 DOI: 10.7150/jca.13396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/15/2015] [Indexed: 12/04/2022] Open
Abstract
Proton beam therapy has been gaining popularity in the management of a wide spectrum of cancers. However, little is known about the effect of proton beams on epigenetic alterations. In this study, the effects of proton beams on DNA methylation were evaluated in the breast cell lines MCF-10A and MCF-7. Pyrosequencing analysis of the long interspersed element 1 (LINE1) gene indicated that a few specific CpG sites were induced to be hypermethylated by proton beam treatment from 64.5 to 76.5% and from 57.7 to 60.0% (p < 0.05) in MCF-10A and MCF-7, respectively. Genome-wide methylation analysis identified “Developmental Disorder, Hereditary Disorder, Metabolic Disease” as the top network in the MCF-7 cell line. The proliferation rate significantly decreased in proton beam-treated cells, as judged by colony formation and cell proliferation assay. Upon treatment with the proton beam, expression of selected genes (MDH2, STYXL1, CPE, FAM91A1, and GPR37) was significantly changed in accordance with the changes of methylation level. Taken together, the findings demonstrate that proton beam-induced physiological changes of cancer cells via methylation modification assists in establishing the epigenetic basis of proton beam therapy for cancer.
Collapse
Affiliation(s)
- Byungtak Kim
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Hansol Bae
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Hyunkyung Lee
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Seungyeon Lee
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Jeong Chan Park
- 2. Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju, Korea
| | - Kye Ryung Kim
- 2. Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju, Korea
| | - Sun Jung Kim
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
8
|
Rager JE, Tilley SK, Tulenko SE, Smeester L, Ray PD, Yosim A, Currier JM, Ishida MC, González-Horta MDC, Sánchez-Ramírez B, Ballinas-Casarrubias L, Gutiérrez-Torres DS, Drobná Z, Del Razo LM, García-Vargas GG, Kim WY, Zhou YH, Wright FA, Stýblo M, Fry RC. Identification of novel gene targets and putative regulators of arsenic-associated DNA methylation in human urothelial cells and bladder cancer. Chem Res Toxicol 2015; 28:1144-55. [PMID: 26039340 DOI: 10.1021/tx500393y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 arsenic-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the arsenic- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer.
Collapse
Affiliation(s)
- Julia E Rager
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Sloane K Tilley
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Samantha E Tulenko
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Lisa Smeester
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Paul D Ray
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States.,‡Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew Yosim
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Jenna M Currier
- ‡Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - María C Ishida
- §Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, México
| | | | - Blanca Sánchez-Ramírez
- §Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, México
| | | | | | - Zuzana Drobná
- ∥Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Luz M Del Razo
- ⊥Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, DF 07360, México
| | - Gonzalo G García-Vargas
- #Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango 34000, México
| | - William Y Kim
- ○Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | | | | | - Miroslav Stýblo
- ‡Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,∥Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebecca C Fry
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States.,‡Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Gelev V, Zabolotny JM, Lange M, Hiromura M, Yoo SW, Orlando JS, Kushnir A, Horikoshi N, Paquet E, Bachvarov D, Schaffer PA, Usheva A. A new paradigm for transcription factor TFIIB functionality. Sci Rep 2014; 4:3664. [PMID: 24441171 PMCID: PMC3895905 DOI: 10.1038/srep03664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/12/2013] [Indexed: 12/23/2022] Open
Abstract
Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects.
Collapse
Affiliation(s)
- Vladimir Gelev
- 1] Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA [2]
| | - Janice M Zabolotny
- 1] Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA [2]
| | - Martin Lange
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Makoto Hiromura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sang Wook Yoo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph S Orlando
- Department of Microbiology and Molecular Genetics, Program in Virology, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Anna Kushnir
- Department of Microbiology and Molecular Genetics, Program in Virology, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nobuo Horikoshi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eric Paquet
- Centre Hospitalier Universitaire de Québec (CHUQ)-Centre de Recherche, Hopital L'Hôtel-Dieu de Québec et Université Laval, Québec G1R 2J6, Canada
| | - Dimcho Bachvarov
- Centre Hospitalier Universitaire de Québec (CHUQ)-Centre de Recherche, Hopital L'Hôtel-Dieu de Québec et Université Laval, Québec G1R 2J6, Canada
| | - Priscilla A Schaffer
- Department of Microbiology and Molecular Genetics, Program in Virology, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Anny Usheva
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|