1
|
Gao Y, Yu M, Liu Z, Liu Y, Kong Z, Zhu C, Qin X, Li Y, Tang L. m 6A demethylase ALKBH5 maintains stemness of intrahepatic cholangiocarcinoma by sustaining BUB1B expression and cell proliferation. Transl Oncol 2024; 41:101858. [PMID: 38242006 PMCID: PMC10825528 DOI: 10.1016/j.tranon.2023.101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
ALKBH5 plays critical roles in various cellular processes via post-transcriptional regulation of oncogenes or tumor suppressors in an N6-methyladenosine (m6A)-dependent manner. However, its function in intrahepatic cholangiocarcinoma (ICC) remains unclear. In the present study, bioinformatic analyses of The Cancer Genome Atlas (TCGA) data were performed, and the association of ALKBH5 in predicting overall survival in patients with ICC was investigated. Then, the clinical data of patients from The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University (Changzhou, China) was used to reveal the overall survival of patients with ICC with different ALKBH5 expression levels by Kaplan-Meier survival analysis. Subsequently, in vitro and in vivo studies were conducted to explore and verify the downstream genes regulated by ALKBH5. The results from TCGA data demonstrated that ALKBH5 expression is elevated in ICC and that patients with high ALKBH5 expression exhibited poor survival compared with patients with low expression. In addition, in vitro assays demonstrated that ALKBH5 promoted cell viability and maintained the stemness of ICC cells, leading to ICC progression. The present study also demonstrated that BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is the downstream gene regulated by ALKBH5 and targeting BUB1B suppressed cell growth. The in vitro and vivo experiments revealed that ALKBH5 might function through BUB1B to maintain the stemness of ICC and that altering BUB1B may suppress ICC progression.
Collapse
Affiliation(s)
- Yuan Gao
- The Institute of Hepatobiliary and pancreatic diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China; Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Miao Yu
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China
| | - Zengyuan Liu
- The Third People's Provincial Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Yi Liu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Zhijun Kong
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Chunfu Zhu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Xihu Qin
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yan Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing 211166, China.
| | - Liming Tang
- Gastrointestinal Surgery and Central Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China.
| |
Collapse
|
2
|
Gerardo-Ramírez M, Giam V, Becker D, Groth M, Hartmann N, Morrison H, May-Simera HL, Radsak MP, Marquardt JU, Galle PR, Herrlich P, Straub BK, Hartmann M. Deletion of Cd44 Inhibits Metastasis Formation of Liver Cancer in Nf2-Mutant Mice. Cells 2023; 12:cells12091257. [PMID: 37174657 PMCID: PMC10177437 DOI: 10.3390/cells12091257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Primary liver cancer is the third leading cause of cancer-related death worldwide. An increasing body of evidence suggests that the Hippo tumor suppressor pathway plays a critical role in restricting cell proliferation and determining cell fate during physiological and pathological processes in the liver. Merlin (Moesin-Ezrin-Radixin-like protein) encoded by the NF2 (neurofibromatosis type 2) gene is an upstream regulator of the Hippo signaling pathway. Targeting of Merlin to the plasma membrane seems to be crucial for its major tumor-suppressive functions; this is facilitated by interactions with membrane-associated proteins, including CD44 (cluster of differentiation 44). Mutations within the CD44-binding domain of Merlin have been reported in many human cancers. This study evaluated the relative contribution of CD44- and Merlin-dependent processes to the development and progression of liver tumors. To this end, mice with a liver-specific deletion of the Nf2 gene were crossed with Cd44-knockout mice and subjected to extensive histological, biochemical and molecular analyses. In addition, cells were isolated from mutant livers and analyzed by in vitro assays. Deletion of Nf2 in the liver led to substantial liver enlargement and generation of hepatocellular carcinomas (HCCs), intrahepatic cholangiocarcinomas (iCCAs), as well as mixed hepatocellular cholangiocarcinomas. Whilst deletion of Cd44 had no influence on liver size or primary liver tumor development, it significantly inhibited metastasis formation in Nf2-mutant mice. CD44 upregulates expression of integrin β2 and promotes transendothelial migration of liver cancer cells, which may facilitate metastatic spreading. Overall, our results suggest that CD44 may be a promising target for intervening with metastatic spreading of liver cancer.
Collapse
Affiliation(s)
- Monserrat Gerardo-Ramírez
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Vanessa Giam
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Diana Becker
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Marco Groth
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Helen Morrison
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, 07745 Jena, Germany
| | - Helen L May-Simera
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Markus P Radsak
- Department of Medicine III, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Center Schleswig-Holstein, Campus Lübeck, 23558 Lübeck, Germany
| | - Peter R Galle
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Peter Herrlich
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Monika Hartmann
- Department of Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
3
|
Jeong MH, Son T, Tae YK, Park CH, Lee HS, Chung MJ, Park JY, Castro CM, Weissleder R, Jo JH, Bang S, Im H. Plasmon-Enhanced Single Extracellular Vesicle Analysis for Cholangiocarcinoma Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205148. [PMID: 36698298 PMCID: PMC10015870 DOI: 10.1002/advs.202205148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/01/2023] [Indexed: 05/20/2023]
Abstract
Cholangiocarcinoma (CCA) is a fatal disease often detected late in unresectable stages. Currently, there are no effective diagnostic methods or biomarkers to detect CCA early with high confidence. Analysis of tumor-derived extracellular vesicles (tEVs) harvested from liquid biopsies can provide a new opportunity to achieve this goal. Here, an advanced nanoplasmonic sensing technology is reported, termed FLEX (fluorescence-amplified extracellular vesicle sensing technology), for sensitive and robust single EV analysis. In the FLEX assay, EVs are captured on a plasmonic gold nanowell surface and immunolabeled for cancer-associated biomarkers to identify tEVs. The underlying plasmonic gold nanowell structures then amplify EVs' fluorescence signals, an effective amplification process at the single EV level. The FLEX EV analysis revealed a wide heterogeneity of tEVs and their marker levels. FLEX also detected small tEVs not detected by conventional EV fluorescence imaging due to weak signals. Tumor markers (MUC1, EGFR, and EPCAM) are identified in CCA, and this marker combination is applied to detect tEVs in clinical bile samples. The FLEX assay detected CCA with an area under the curve of 0.93, significantly better than current clinical markers. The sensitive and accurate nanoplasmonic EV sensing technology can aid in early CCA diagnosis.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Taehwang Son
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Yoo Keung Tae
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Chan Hee Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hee Seung Lee
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Moon Jae Chung
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jeong Youp Park
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Cancer Center, Massachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
- Department of Systems BiologyHarvard Medical SchoolBostonMA02115USA
| | - Jung Hyun Jo
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Seungmin Bang
- Division of GastroenterologyDepartment of Internal MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hyungsoon Im
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
| |
Collapse
|
4
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Macias RIR, Cardinale V, Kendall TJ, Avila MA, Guido M, Coulouarn C, Braconi C, Frampton AE, Bridgewater J, Overi D, Pereira SP, Rengo M, Kather JN, Lamarca A, Pedica F, Forner A, Valle JW, Gaudio E, Alvaro D, Banales JM, Carpino G. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut 2022; 71:1669-1683. [PMID: 35580963 DOI: 10.1136/gutjnl-2022-327099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour arising from the biliary system. In Europe, this tumour frequently presents as a sporadic cancer in patients without defined risk factors and is usually diagnosed at advanced stages with a consequent poor prognosis. Therefore, the identification of biomarkers represents an utmost need for patients with CCA. Numerous studies proposed a wide spectrum of biomarkers at tissue and molecular levels. With the present paper, a multidisciplinary group of experts within the European Network for the Study of Cholangiocarcinoma discusses the clinical role of tissue biomarkers and provides a selection based on their current relevance and potential applications in the framework of CCA. Recent advances are proposed by dividing biomarkers based on their potential role in diagnosis, prognosis and therapy response. Limitations of current biomarkers are also identified, together with specific promising areas (ie, artificial intelligence, patient-derived organoids, targeted therapy) where research should be focused to develop future biomarkers.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) group, University of Salamanca, IBSAL, Salamanca, Spain.,Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Guido
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Cedric Coulouarn
- UMR_S 1242, COSS, Centre de Lutte contre le Cancer Eugène Marquis, INSERM University of Rennes 1, Rennes, France
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam E Frampton
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stephen P Pereira
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Jakob N Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Lamarca
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Federica Pedica
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Alejandro Forner
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,BCLC group, Liver Unit, Hospital Clínic Barcelona. IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Jesus M Banales
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| |
Collapse
|
6
|
Comparison of growth features and cancer stem cell prevalence in intrahepatic and extrahepatic cholangiocarcinoma cell lines. Clin Exp Hepatol 2022; 8:60-69. [PMID: 35415255 PMCID: PMC8984799 DOI: 10.5114/ceh.2022.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Aim of the study Intra- and extrahepatic cholangiocarcinoma (I-CCA and E-CCA respectively) exhibit different growth features that contribute to different clinical outcomes. Cancer stem cells (CSCs) influence tumor growth and thereby may be responsible for these differences. The aim of this study was to document and compare the growth features of human I-CCA and E-CCA cell lines and determine whether any differences observed could be explained by differences in the prevalence and/or stem cell surface marker (SCSM) expression profiles of CSCs within the tumor cell lines. Material and methods Six CCA cells lines, three I-CCA and three E-CCA, were studied. Tumor cell growth features including cell proliferation, colony/spheroid formation, migration and invasion were documented. CSC prevalence and SCSM expression profiles were examined by flow cytometry. Results I-CCA cells had significantly increased proliferative activity, shorter doubling times and were more invasive than E-CCA cells, while colony/spheroid formation and migration were similar in the two cell populations. There were no significant differences in CSC prevalence rates or SCSM expression profiles. Conclusions These findings suggest that I-CCA cells proliferate at a more rapid rate and are more invasive than E-CCA cells but the differences cannot be explained by differences in the prevalence or SCSM expression profiles of CSCs within the tumor cell population.
Collapse
|
7
|
SOX2 knockdown slows cholangiocarcinoma progression through inhibition of transcriptional activation of lncRNA PVT1. Biochem J 2021; 477:3527-3540. [PMID: 32812642 DOI: 10.1042/bcj20200219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/26/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
Cholangiocarcinoma (CCA) has accounted for a high rate of mortality and morbidity in the recent years. Long non-coding RNAs (lncRNAs) play an important role in different cellular environments, including cancer. As such, they have been used as potential targets during CCA therapy. The objective of this study was to investigate the effects of lncRNA PVT1 on CCA and its mechanisms behind lncRNA PVT1 regulation. The interactions among SOX2, lncRNA PVT1, miR-186 and SEMA4D were verified by chromatin immunoprecipitation, RNA immunoprecipitation and dual luciferase reporter gene assay. Gain- and loss-of-function experiments were conducted to explore the modulatory effects of SOX2, lncRNA PVT1, miR-186 and SEMA4D on cell viability, migration and invasion of CCA by CCK-8 and Transwell assays. In vivo effects of lncRNA PVT1 or SEMA4D were studied in a nude mouse model. MiR-186 was poorly expressed while SOX2, lncRNA PVT1 and SEMA4D were highly expressed in CCA cells. SOX2 induced the transcriptional activation of lncRNA PVT1 expression to promote proliferation, migration and invasion of CCA cells. LncRNA PVT1 bound to miR-186 and miR-186 was found to target SEMA4D. The overexpression of lncRNA PVT1 and SEMA4D, as well as the inhibition of miR-186 led to elevated CCA cell proliferation, migration and invasion. In vivo experiments confirmed the inhibitory role of lncRNA PVT1 knockdown or SEMA4D knockdown in CCA. All in all, SOX2 down-regulated miR-186 through the transcriptional activation of lncRNA PVT1, whereas elevating SEMA4D expression, thus promoting the progression of CCA.
Collapse
|
8
|
Urban SK, Sänger H, Krawczyk M, Julich-Haertel H, Willms A, Ligocka J, Azkargorta M, Mocan T, Kahlert C, Kruk B, Jankowski K, Patkowski W, Krawczyk M, Zieniewicz K, Hołówko W, Krupa Ł, Rzucidło M, Gutkowski K, Wystrychowski W, Król R, Raszeja-Wyszomirska J, Słomka A, Schwab R, Wöhler A, Gonzalez-Carmona MA, Gehlert S, Sparchez Z, Banales JM, Strassburg CP, Lammert F, Milkiewicz P, Kornek M. Synergistic effects of extracellular vesicle phenotyping and AFP in hepatobiliary cancer differentiation. Liver Int 2020; 40:3103-3116. [PMID: 32614460 DOI: 10.1111/liv.14585] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Biliary cancer, comprising cholangio- and gallbladder carcinomas, is associated with high mortality due to asymptomatic disease onset and resulting late diagnosis. Currently, no robust diagnostic biomarker is clinically available. Therefore, we explored the feasibility of extracellular vesicles (EVs) as a liquid biopsy tool for biliary cancer screening and hepatobiliary cancer differentiation. METHODS Serum EVs of biliary cancer, hepatocellular carcinoma, colorectal cancer and non-small cell lung cancer patients, as well as from healthy individuals, were isolated by sequential two-step centrifugation and presence of indicated EVs was evaluated by fluorescence activated cell sorting (FACS) analysis. RESULTS Two directly tumour-related antigen combinations (AnnV+ CD44v6+ and AnnV+ CD44v6+ CD133+ ) and two combinations related to progenitor cells from the tumour microenvironment (AnnV+ CD133+ gp38+ and AnnV+ EpCAM+ CD133+ gp38+ ) were associated with good diagnostic performances that could potentially be used for clinical assessment of biliary cancer and differentiation from other cancer entities. With 91% sensitivity and 69% specificity AnnV+ CD44v6+ EVs showed the most promising results for differentiating biliary cancers from HCC. Moreover using a combined approach of EV levels of the four populations with serum AFP values, we obtained a perfect separation of biliary cancer and HCC with sensitivity, specificity, positive and negative predictive value all reaching 100% respectively. CONCLUSIONS EV phenotyping, especially if combined with serum AFP, represents a minimally invasive, accurate liquid biopsy tool that could improve cancer screening and differential diagnosis of hepatobiliary malignancies.
Collapse
Affiliation(s)
- Sabine K Urban
- Department of Internal Medicine I, University Medical Center Bonn, Bonn, Germany.,Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Hanna Sänger
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Henrike Julich-Haertel
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Arnulf Willms
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany
| | - Joanna Ligocka
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Mikel Azkargorta
- Proteomics Platform, Bizkaia Science and Technology Park, Derio, Spain
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Beata Kruk
- Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Jankowski
- Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Waldemar Patkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Wacław Hołówko
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Krupa
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Specialist District Hospital in Rzeszow, Rzeszow, Poland
| | - Mateusz Rzucidło
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Specialist District Hospital in Rzeszow, Rzeszow, Poland
| | - Krzysztof Gutkowski
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Specialist District Hospital in Rzeszow, Rzeszow, Poland
| | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Raszeja-Wyszomirska
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland
| | - Robert Schwab
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany
| | - Aliona Wöhler
- Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany
| | | | - Sebastian Gehlert
- Department for Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - Zeno Sparchez
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | | | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.,Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Medical Center Bonn, Bonn, Germany.,Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
9
|
Yang Y, Deng X, Li Q, Wang F, Miao L, Jiang Q. Emerging roles of long noncoding RNAs in cholangiocarcinoma: Advances and challenges. Cancer Commun (Lond) 2020; 40:655-680. [PMID: 33142045 PMCID: PMC7743012 DOI: 10.1002/cac2.12109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA), a cancer with a relatively low incidence rate, is usually associated with poor prognosis. Current modalities for the diagnosis and treatment of CCA patients are still far from satisfactory. In recent years, numerous long noncoding RNAs (lncRNAs) have been identified as crucial players in the development of various cancers, including CCA. Abnormally expressed lncRNAs in CCA, regulated by some upstream molecules, significantly influence the biological behavior of tumor cells and are involved in tumor development through various mechanisms, including interactions with functional proteins, participation in competing for endogenous RNA (ceRNA) regulatory networks, activation of cancer‐related signaling pathways and epigenetic modification of gene expression. Furthermore, several lncRNAs are closely associated with the clinicopathological features of CCA patients, and are promising biomarkers for diagnosing and prognostication of CCA. Some of these lncRNAs play an important role in chemotherapy drug resistance. In addition, lncRNAs have also been shown to be involved in the inflammation microenvironment of CCA and malignant outcome of CCA risk factors, such as cholestatic liver diseases. In view of the difficulty of diagnosing CCA, more attention should be paid to detectable lncRNAs in the serum or bile. This review summarizes the recent knowledge on lncRNAs in CCA and provides a new outlook on the molecular mechanisms of CCA development from the perspective of lncRNAs. Moreover, we also discussed the limitations of the current studies and differential expression of lncRNAs in different types of CCA.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Quanpeng Li
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Fei Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Qi Jiang
- Department of Gastroenterology, Dongtai People's Hospital, Yancheng, Jiangsu, 224000, P. R. China
| |
Collapse
|
10
|
Gu Y, Zheng X, Ji J. Liver cancer stem cells as a hierarchical society: yes or no? Acta Biochim Biophys Sin (Shanghai) 2020; 52:723-735. [PMID: 32490517 DOI: 10.1093/abbs/gmaa050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) are cells possessing abilities of self-renewal, differentiation, and tumorigenicity in NOD/SCID mice. Based on this definition, multiple cell surface markers (such as CD24, CD133, CD90, and EpCAM) as well as chemical methods are discovered to enrich liver CSCs in the recent decade. Accumulated studies have revealed molecular signatures and signaling pathways involved in regulating different liver CSCs. Among liver CSCs positive for different markers, some molecular features and regulatory pathways are commonly shared, while some are only unique in certain CSC populations. These studies imply that liver CSCs exhibit diverse heterogeneity, while a functional relationship also exists. The aim of this review is to revisit the society of liver CSCs and summarize the common or unique molecular features of known liver CSCs. We hope to call for attention of researchers on the relationship of the liver CSC subgroups and to provide clues on the hierarchical structure of the liver CSC society.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin Zheng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Mcgrath NA, Fu J, Gu SZ, Xie C. Targeting cancer stem cells in cholangiocarcinoma (Review). Int J Oncol 2020; 57:397-408. [PMID: 32468022 PMCID: PMC7307587 DOI: 10.3892/ijo.2020.5074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of cholangiocarcinoma has been increasing steadily over the past 50 years, but the survival rates remained low due to the disease being highly resistant to non-surgical treatment interventions. Cancer stem cell markers are expressed in cholangiocarcinoma, suggesting that they serve a significant role in the physiology of the disease. Cancer stem cells are frequently implicated in tumor relapse and acquired resistance to a number of therapeutic strategies, including chemotherapy, radiation and immune checkpoint inhibitors. Novel targeted therapies to eradicate cancer stem cells may assist in overcoming treatment resistance in cholangiocarcinoma and reduce the rates of relapse and recurrence. Several signaling pathways have been previously documented to regulate the development and survival of cancer stem cells, including Notch, janus kinase/STAT, Hippo/yes-associated protein 1 (YAP1), Wnt and Hedgehog signaling. Although pharmacological agents have been developed to target these pathways, only modest effects were reported in clinical trials. The Hippo/YAP1 signaling pathway has come to the forefront in the field of cancer stem cell research due to its reported involvement in epithelium-mesenchymal transition, cell adhesion, organogenesis and tumorigenesis. In the present article, recent findings in terms of cancer stem cell research in cholangiocarcinoma were reviewed, where the potential therapeutic targeting of cancer stem cells in this disease was discussed.
Collapse
Affiliation(s)
- Nicole A Mcgrath
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Jianyang Fu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sophie Z Gu
- Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
12
|
Liu J, Liu W, Li H, Deng Q, Yang M, Li X, Liang Z. Identification of key genes and pathways associated with cholangiocarcinoma development based on weighted gene correlation network analysis. PeerJ 2019; 7:e7968. [PMID: 31687280 PMCID: PMC6825751 DOI: 10.7717/peerj.7968] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
Background As the most frequently occurred tumor in biliary tract, cholangiocarcinoma (CCA) is mainly characterized by its late diagnosis and poor outcome. It is therefore urgent to identify specific genes and pathways associated with its progression and prognosis. Materials and Methods The differentially expressed genes in The Cancer Genome Atlas were analyzed to build the co-expression network by Weighted gene co-expression network analysis (WGCNA). Gene ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted for the selected genes. Module-clinical trait relationships were analyzed to explore the association with clinicopathological parameters. Log-rank tests and cox regression were used to identify the prognosis-related genes. Results The most related modules with CCA development were tan module containing 181 genes and salmon module with 148 genes. GO analysis suggested enrichment terms of digestion, hormone transport and secretion, epithelial cell proliferation, signal release, fibroblast activation, response to acid chemical, wnt, Nicotinamide adenine dinucleotide phosphate metabolism. KEGG analysis demonstrated 15 significantly altered pathways including glutathione metabolism, wnt, central carbon metabolism, mTOR, pancreatic secretion, protein digestion, axon guidance, retinol metabolism, insulin secretion, salivary secretion, fat digestion. Key genes of SOX2, KIT, PRSS56, WNT9A, SLC4A4, PRRG4, PANX2, PIR, RASSF8, MFSD4A, INS, RNF39, IL1R2, CST1, and PPP3CA might be potential prognostic markers for CCA, of which RNF39 and PRSS56 also showed significant correlation with clinical stage. Discussion Differentially expressed genes and key modules contributing to CCA development were identified by WGCNA. Our results offer novel insights into the characteristics in the etiology, prognosis, and treatment of CCA.
Collapse
Affiliation(s)
- Jingwei Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weixin Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hao Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiuping Deng
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Yang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zeng Liang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Wu HJ, Chu PY. Role of Cancer Stem Cells in Cholangiocarcinoma and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20174154. [PMID: 31450710 PMCID: PMC6747544 DOI: 10.3390/ijms20174154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common type of liver cancer, and is highly aggressive with very poor prognosis. CCA is classified into intrahepatic cholangiocarcinoma (iCCA) and extra-hepatic cholangiocarcinoma (eCCA), which is further stratified into perihilar (pCCA) and distal (dCCA). Cancer stem cells (CSCs) are a subpopulation of cancer cells capable of tumor initiation and malignant growth, and are also responsible for chemoresistance. Thus, CSCs play an important role in CCA carcinogenesis. Surface markers such as CD133, CD24, CD44, EpCAM, Sox2, CD49f, and CD117 are important for identifying and isolating CCA CSCs. CSCs are present in the tumor microenvironment (TME), termed ‘CSC niche’, where cellular components and soluble factors interact to promote tumor initiation. Epithelial-to-mesenchymal transition (EMT) is another important mechanism underlying carcinogenesis, involved in the invasiveness, metastasis and chemoresistance of cancer. It has been demonstrated that EMT plays a critical role in generating CSCs. Therapies targeting the surface markers and signaling pathways of CCA CSCs, proteins involved in TME, and immune checkpoint proteins are currently under investigation. Therefore, this review focuses on recent studies on the roles of CSCs in CCA; the possible therapeutic strategies targeting CSCs of CCA are also discussed.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua County 505, Taiwan
| | - Pei-Yi Chu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan.
| |
Collapse
|
14
|
Macias RIR, Kornek M, Rodrigues PM, Paiva NA, Castro RE, Urban S, Pereira SP, Cadamuro M, Rupp C, Loosen SH, Luedde T, Banales JM. Diagnostic and prognostic biomarkers in cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:108-122. [PMID: 30843325 DOI: 10.1111/liv.14090] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
The high mortality rate of cholangiocarcinoma (CCA) is due, in part, to the lack of non-invasive approaches able to accurately detect this silent tumour at early stages, when therapeutic options can be potentially curative or may at least increase the overall survival of patients. The fact that the majority of CCA tumours are not linked to any known aetiological factor highly compromises the monitoring of patients at risk for tumour development and also their early diagnosis. Combination of clinical/biochemical features, imaging techniques and analysis of non-specific tumour biomarkers in serum are commonly used to help in the diagnosis of CCA, but tumour biopsy is usually required to confirm the diagnosis. Moreover, no prognostic biomarkers are currently used in the clinical setting, deserving more innovative research, and international validation and consensus. Important efforts have been made in the last few years to identify accurate non-invasive biomarkers, by using innovative techniques and high-throughput omics technologies. This review summarizes and discusses the advances in the investigation of novel diagnostic and prognostic biomarkers in CCA and envisions the future directions in this field of research.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain.,Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.,Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Nuno A Paiva
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sabine Urban
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Stephen P Pereira
- Institute for Liver & Digestive Health, Royal Free Hospital Campus, University College London, London, UK
| | | | - Christian Rupp
- Department of Internal Medicine IV, Medical University of Heidelberg, Heidelberg, Germany
| | - Sven H Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH, Aachen, Germany
| | - Jesus M Banales
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Liu P, Tang H, Song C, Wang J, Chen B, Huang X, Pei X, Liu L. SOX2 Promotes Cell Proliferation and Metastasis in Triple Negative Breast Cancer. Front Pharmacol 2018; 9:942. [PMID: 30186173 PMCID: PMC6110877 DOI: 10.3389/fphar.2018.00942] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
This study explored the expression, biological function and prognostic role of SOX2 in triple negative breast cancer (TNBC). Quantitative real-time PCR and immunohistochemistry were used to detect the expression of SOX2 in TNBC cell lines and clinical tissues. MTT assay, Transwell assay, flow cytometry and xenograft mouse model were used to assess the biological functions of SOX2. It was found that SOX2 was up-regulated in both TNBC cell lines and clinical tissues. High expression of SOX2 was associated with shorter overall survival and disease free survival. Moreover, inhibition of SOX2 suppressed cell proliferation and invasion, induced cell apoptosis in vitro, and suppressed tumorigenesis and metastasis in vivo. In addition, analysis of TNM stage and lymph nodes infiltration among the 237 TNBC patients by paired χ2 test showed that SOX2 was inversely correlated with tumor status, our findings provided evidence that SOX2 acts as a tumor promoter in TNBC and inhibition of SOX2 could be a potential therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojia Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoqing Pei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Ultrasond, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Longzhong Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Ultrasond, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Bragazzi MC, Ridola L, Safarikia S, Matteo SD, Costantini D, Nevi L, Cardinale V. New insights into cholangiocarcinoma: multiple stems and related cell lineages of origin. Ann Gastroenterol 2017; 31:42-55. [PMID: 29333066 PMCID: PMC5759612 DOI: 10.20524/aog.2017.0209] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies that may develop at any level of the biliary tree. CCA is currently classified into intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA) on the basis of its anatomical location. Notably, although these three CCA subtypes have common features, they also have important inter- and intra-tumor differences that can affect their pathogenesis and outcome. A unique feature of CCA is that it manifests in the hepatic parenchyma or large intrahepatic and extrahepatic bile ducts, furnished by two distinct stem cell niches: the canals of Hering and the peribiliary glands, respectively. The complexity of CCA pathogenesis highlights the need for a multidisciplinary, translational, and systemic approach to this malignancy. This review focuses on advances in the knowledge of CCA histomorphology, risk factors, molecular pathogenesis, and subsets of CCA.
Collapse
Affiliation(s)
- Maria Consiglia Bragazzi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Ridola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Samira Safarikia
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Sabina Di Matteo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Daniele Costantini
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Nevi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Miwa T, Nagata T, Kojima H, Sekine S, Okumura T. Isoform switch of CD44 induces different chemotactic and tumorigenic ability in gallbladder cancer. Int J Oncol 2017; 51:771-780. [PMID: 28677740 PMCID: PMC5564409 DOI: 10.3892/ijo.2017.4063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
Gallbladder cancer (GBC) is one of the most unfavorable prognostic tumor, and immediate growth and distant metastasis are important factors associated with the poor prognosis of patients with this disease. Standard and variant isoforms of CD44 are associated with tumor growth, metastasis, and epithelial-mesenchymal transition (EMT), although their roles in GBC are unclear. We investigated the relationship between the CD44 isoforms with EMT, chemotaxis, and tumorigenicity. We analyzed CD44 expression in the GBC cell line NOZ and found that it comprises a major population that expressed CD44std+/CD44v9− (CD44s) and the minor population that expressed CD44std−/CD44v9+ (CD44v). CD44s cells exhibited increased chemotaxis and invasiveness compared with CD44v cells in in vitro cell migration and invasion assays. CD44s cells expressed higher and lower levels of mRNAs that encode vimentin and E-cadherin, respectively, compared with those of CD44v cells. CD44s cells expressed high levels of the transcription factors ZEB1 and ZEB2 that mediate EMT, and low levels of a splicing factor ESRP1 that controls the CD44 isoform switch. We performed in vivo mouse xenotransplantation analyses of CD44s and CD44v cells and found that CD44v cells exhibited relatively increased tumorigenicity. Immunohistochemical analysis of tissue microarrays revealed that high levels of CD44v9 and CD44std were associated with poorer prognosis. The expression of CD44std was also associated with poorly differentiated tumors and distant metastasis. In conclusion, CD44s was associated with a mesenchymal phenotype, increased chemotaxis and invasiveness, and decreased tumorigenicity. In contrast, CD44v cells exhibited an epithelial phenotype, decreased chemotaxis, decreased invasiveness, and increased tumorigenicity. These findings suggest that CD44v and CD44s cells play differently important roles in the progression and metastasis of GBC and the isoform switch triggers EMT.
Collapse
Affiliation(s)
- Takeshi Miwa
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Hirofumi Kojima
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Shinichi Sekine
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama 930-0194, Japan
| |
Collapse
|
18
|
Mayr C, Ocker M, Ritter M, Pichler M, Neureiter D, Kiesslich T. Biliary tract cancer stem cells - translational options and challenges. World J Gastroenterol 2017; 23:2470-2482. [PMID: 28465631 PMCID: PMC5394510 DOI: 10.3748/wjg.v23.i14.2470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Management of biliary tract cancer remains challenging. Tumors show high recurrence rates and therapeutic resistance, leading to dismal prognosis and short survival. The cancer stem cell model states that a tumor is a heterogeneous conglomerate of cells, in which a certain subpopulation of cells - the cancer stem cells - possesses stem cell properties. Cancer stem cells have high clinical relevance due to their potential contributions to development, progression and aggressiveness as well as recurrence and metastasis of malignant tumors. Consequently, reliable identification of as well as pharmacological intervention with cancer stem cells is an intensively investigated and promising research field. The involvement of cancer stem cells in biliary tract cancer is likely as a number of studies demonstrated their existence and the obvious clinical relevance of several established cancer stem cell markers in biliary tract cancer models and tissues. In the present article, we review and discuss the currently available literature addressing the role of putative cancer stem cells in biliary tract cancer as well as the connection between known contributors of biliary tract tumorigenesis such as oncogenic signaling pathways, micro-RNAs and the tumor microenvironment with cancer stem cells.
Collapse
|
19
|
Autocrine and Paracrine Mechanisms Promoting Chemoresistance in Cholangiocarcinoma. Int J Mol Sci 2017; 18:ijms18010149. [PMID: 28098760 PMCID: PMC5297782 DOI: 10.3390/ijms18010149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 02/07/2023] Open
Abstract
Resistance to conventional chemotherapeutic agents, a typical feature of cholangiocarcinoma, prevents the efficacy of the therapeutic arsenal usually used to combat malignancy in humans. Mechanisms of chemoresistance by neoplastic cholangiocytes include evasion of drug-induced apoptosis mediated by autocrine and paracrine cues released in the tumor microenvironment. Here, recent evidence regarding molecular mechanisms of chemoresistance is reviewed, as well as associations between well-developed chemoresistance and activation of the cancer stem cell compartment. It is concluded that improved understanding of the complex interplay between apoptosis signaling and the promotion of cell survival represent potentially productive areas for active investigation, with the ultimate aim of encouraging future studies to unveil new, effective strategies able to overcome current limitations on treatment.
Collapse
|
20
|
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RIR, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJG, Alvaro D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016; 13:261-80. [PMID: 27095655 DOI: 10.1038/nrgastro.2016.51] [Citation(s) in RCA: 914] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Marco Marzioni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310, Oslo, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, EH16 4SB, Edinburgh, United Kingdom
| | - Laura Fouassier
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Andreas Geier
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstrasse 6, D-97080, Würzburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, Universitätsmedizin Greifswald, Friedrich-Löffler-Strasse 23e, 17489, Greifswald, Germany
| | - Joachim C Mertens
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Antonio Benedetti
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Luca Maroni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Javier Vaquero
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Rocio I R Macias
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Kirsten M Boberg
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Jose J G Marin
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| |
Collapse
|
21
|
Romano M, De Francesco F, Gringeri E, Giordano A, Ferraro GA, Di Domenico M, Cillo U. Tumor Microenvironment Versus Cancer Stem Cells in Cholangiocarcinoma: Synergistic Effects? J Cell Physiol 2015; 231:768-76. [PMID: 26357947 DOI: 10.1002/jcp.25190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022]
Abstract
Cholangiocarcinoma (CCAs) may be defined as tumors that derived from the biliary tree with the differentiation in the biliary epithelial cells. This tumor is malignant, extremely aggressive with a poor prognosis. It can be treated surgically and its pathogenesis is poorly understood. The tumor microenvironment (TME) is a very important factor in the regulation of tumor angiogenesis, invasion, and metastasis. Besides cancer stem cells (CSCs) can modulate tumor growth, stroma formation, and migratory capability. The initial stage of tumorigenesis is characterized by genetic mutations and epigenetic alterations due to intrinsic factors which lead to the generation of oncogenes thus inducing tumorigenesis. CSCs may result from precancerous stem cells, cell de-differentiation, normal stem cells, or an epithelial-mesenchymal transition (EMT). CSCs have been found in the cancer niche, and EMT may occur early within the tumor microenvironment. Previous studies have demonstrated evidence of cholangiocarcinoma stem cells (CD133, CD24, EpCAM, CD44, and others) and the presence of these markers has been associated with malignant potential. The interaction between TME and cholangiocarcinoma stem cells via signaling mediators may create an environment that accommodates tumor growth, yielding resistance to cytotoxic insults (chemotherarapeutic). While progress has been made in the understanding of the mechanisms, the interactions in the tumorigenic process still remain a major challenge. Our review, addresses recent concepts of TME-CSCs interaction and will emphasize the importance of early detection with the use of novel diagnostic mechanisms such as CCA-CSC biomarkers and the importance of tumor stroma to define new treatments. J. Cell. Physiol. 231: 768-776, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maurizio Romano
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Francesco De Francesco
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Giuseppe A Ferraro
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| |
Collapse
|
22
|
Sun Q, Li J, Wang G, Xie Y. Role of the embryonic protein SOX2 in cholangiocarcinoma. Cell Biochem Biophys 2015; 70:1311-6. [PMID: 24906237 DOI: 10.1007/s12013-014-0056-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SOX2 overexpression correlates with aggressive behavior and poor overall survival in cholangiocarcinoma (CCA). However, the cellular functions and precise role of SOX2 in CCA have not been elucidated. Here, we inserted SOX2 coding sequence to establish a CAA cell line which stably overexpressed SOX2. In vitro experiments showed that overexpression of SOX2 in cells was associated with increased cell proliferation, suppressed cell apoptosis, as well as enhanced cell migration and invasion. Our findings may lead to a better understanding of the biological effect of SOX2 and provide mechanistic insights for developing potential therapeutic strategies for CCA treatment.
Collapse
Affiliation(s)
- Qiang Sun
- Department of General Surgery, The Second Artillery General Hospital PLA, Beijing, 100088, China,
| | | | | | | |
Collapse
|
23
|
Cardinale V, Renzi A, Carpino G, Torrice A, Bragazzi MC, Giuliante F, DeRose AM, Fraveto A, Onori P, Napoletano C, Franchitto A, Cantafora A, Grazi G, Caporaso N, D'Argenio G, Alpini G, Reid LM, Gaudio E, Alvaro D. Profiles of cancer stem cell subpopulations in cholangiocarcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1724-39. [PMID: 25892683 DOI: 10.1016/j.ajpath.2015.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/03/2015] [Accepted: 02/24/2015] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinomas (CCAs) comprise a mucin-secreting form, intrahepatic or perihilar, and a mixed form located peripherally. We characterized cancer stem cells (CSCs) in CCA subtypes and evaluated their cancerogenic potential. CSC markers were investigated in 25 human CCAs in primary cultures and established cell lines. Tumorigenic potential was evaluated in vitro or in xenografted mice after s.c. or intrahepatic injection in normal and cirrhotic (carbon tetrachloride-induced) mice. CSCs comprised more than 30% of the tumor mass. Although the CSC profile was similar between mucin-intrahepatic and mucin-perihilar subtypes, CD13(+) CSCs characterized mixed-intrahepatic, whereas LGR5(+) characterized mucin-CCA subtypes. Many neoplastic cells expressed epithelial-mesenchymal transition markers and coexpressed mesenchymal and epithelial markers. In primary cultures, epithelial-mesenchymal transition markers, mesenchymal markers (vimentin, CD90), and CD13 largely predominated over epithelial markers (CD133, EpCAM, and LGR5). In vitro, CSCs expressing epithelial markers formed a higher number of spheroids than CD13(+) or CD90(+) CSCs. In s.c. tumor xenografts, tumors dominated by stromal markers were formed primarily by CD90(+) and CD13(+) cells. By contrast, in intrahepatic xenografts in cirrhotic livers, tumors were dominated by epithelial traits reproducing the original human CCAs. In conclusion, CSCs were rich in human CCAs, implicating CCAs as stem cell-based diseases. CSC subpopulations generate different types of cancers depending on the microenvironment. Remarkably, CSCs reproduce the original human CCAs when injected into cirrhotic livers.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Alessia Torrice
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Maria C Bragazzi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Felice Giuliante
- Surgery, Hepatobiliary Unit, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Agostino M DeRose
- Surgery, Hepatobiliary Unit, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Alice Fraveto
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy; Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy
| | - Alfredo Cantafora
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - GianLuca Grazi
- Hepato-Biliary Surgery, Regina Elena National Cancer Institute, Rome, Italy
| | - Nicola Caporaso
- Gastroenterology Unit, Department of Clinical and Experimental Medicine, Federico II University of Naples, Naples, Italy
| | - Giuseppe D'Argenio
- Gastroenterology Unit, Department of Clinical and Experimental Medicine, Federico II University of Naples, Naples, Italy
| | - Gianfranco Alpini
- Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Department of Medicine, Division Gastroenterology, Scott & White Healthcare and Texas A&M System Health Science Center, College of Medicine, Temple, Texas
| | - Lola M Reid
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy; Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy.
| |
Collapse
|