1
|
Du X, Zhao Z, Zhao X, Wang H, Jiang L, Tang W. Risk signature identification and NPRL2 affects sunitinib sensitivity in clear cell renal cell carcinoma. Biochem Biophys Res Commun 2023; 663:122-131. [PMID: 37121122 DOI: 10.1016/j.bbrc.2023.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Tumor suppressor genes (TSGs) play a crucial role in tumorigenesis and drug resistance. We analyzed the subtypes of clear cell renal cell carcinoma (ccRCC) mediated by 8 genes contained in the 3p21.3 tumor suppressor gene cluster and their effects on TME cell infiltration based on the TCGA database. The risk score model was established by principal component analysis. The hub gene NPRL2 was selected by protein-protein interactions (PPI) analysis. The effect of NPRL2 on sunitinib sensitivity of ccRCC was verified by using CCK-8, colony formation assay, wound healing assay, transwell assay and xenograft tumor model. Changes in protein expression were detected by Western blotting. We found that 8 TSGs were all differentially expressed in ccRCC samples, which could divide ccRCC into two subtypes. The constructed risk score model could predict the prognosis and drug sensitivity of ccRCC patients, and was an independent prognostic factor for ccRCC. Over-expression of NPRL2 promoted apoptosis, inhibited EMT, decreased the phosphorylation of the PI3K/AKT/mTOR signaling pathway to inhibit its activity, and promoted the sensitivity of sunitinib to ccRCC cells. Collectively, our findings increased the understanding of TSGs in ccRCC, suggesting that NPRL2 as a TSG could enhance sunitinib sensitivity to ccRCC cells.
Collapse
Affiliation(s)
- Xiaoyi Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhipeng Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Zhao
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hexi Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wei Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Loissell-Baltazar YA, Dokudovskaya S. SEA and GATOR 10 Years Later. Cells 2021; 10:cells10102689. [PMID: 34685669 PMCID: PMC8534245 DOI: 10.3390/cells10102689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022] Open
Abstract
The SEA complex was described for the first time in yeast Saccharomyces cerevisiae ten years ago, and its human homologue GATOR complex two years later. During the past decade, many advances on the SEA/GATOR biology in different organisms have been made that allowed its role as an essential upstream regulator of the mTORC1 pathway to be defined. In this review, we describe these advances in relation to the identification of multiple functions of the SEA/GATOR complex in nutrient response and beyond and highlight the consequence of GATOR mutations in cancer and neurodegenerative diseases.
Collapse
|
3
|
Luo S, Shao L, Chen Z, Hu D, Jiang L, Tang W. NPRL2 promotes docetaxel chemoresistance in castration resistant prostate cancer cells by regulating autophagy through the mTOR pathway. Exp Cell Res 2020; 390:111981. [PMID: 32234375 DOI: 10.1016/j.yexcr.2020.111981] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
Docetaxel-based chemotherapy is recommended for metastatic castration-resistant prostate cancer (mCRPC). However, chemoresistance is inevitable and eventually progresses after several rounds of chemotherapy. Therefore, exploration of new therapeutic targets and molecular mechanisms that contribute to chemoresistance remains necessary. Our previous study accidentally demonstrated that expression of nitrogen permease regulator-like 2 (NPRL2), which is defined as a tumor suppressor, is upregulated in prostate cancer (PCa) and linked to poor prognosis, particularly in CRPC. The aim of this study was to investigate the role of NPRL2 in the chemoresistant CRPC cells. We found that NPRL2 was significantly overexpressed in docetaxel-resistant CRPC cells, while autophagy was enhanced and mTOR signaling was inhibited. Inhibiting NPRL2 increased the sensitivity to docetaxel in docetaxel-resistant CRPC cells, enhanced apoptosis and inhibited autophagy, and the opposite trends were observed when the mTOR inhibitor torin 1 was added to NPRL2-silenced cells. We further found that NPRL2 silenced docetaxel-resistant CRPC cells were sensitive to docetaxel in vivo. Briefly, our research reveals that overexpression of NPRL2 promotes chemoresistance by regulating autophagy via mTOR signaling and inhibits apoptosis in CRPC cells.
Collapse
Affiliation(s)
- Shengjun Luo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lan Shao
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhixiong Chen
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing, China.
| | - Daixing Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wei Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Liu A, Qiao J, He L, Liu Z, Chen J, Pei F, Du Y. Nitrogen Permease Regulator-Like-2 Exhibited Anti-Tumor Effects And Enhanced The Sensitivity Of Colorectal Cancer Cells To Oxaliplatin And 5-Fluorouracil. Onco Targets Ther 2019; 12:8637-8644. [PMID: 31695423 PMCID: PMC6805118 DOI: 10.2147/ott.s219562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Our previous study revealed that nitrogen permease regulator-like-2 (NPRL2), a promising anti-tumor gene, was downregulated at both the blood and tissue levels in CRC patients compared with that in healthy individuals. Purpose This study aims to explore the role of NPRL2 in CRC. Methods Herein, we constructed NPRL2 overexpression lentivirus vectors and transfected them into HT29 cells. The transfected cells were inoculated subcutaneously into nude mice. Tumor growth, pathology, apoptosis, and the protein expression of caspase-3, caspase-7, Bax, Bcl-2, and phosphorylated protein kinase B (p-Akt) were evaluated. To further explore whether NPRL2 could reduce drug resistance of CRC cells against oxaliplatin (L-OHP) and 5-fluorouracil (5-FU), we constructed a tumor model using HT29 cells. The tumor model was treated with lentiviral particles assembled with vectors encoding NPRL2 and exposed to L-OHP and 5-FU. Tumor growth, pathology, apoptosis, and the protein expression of caspase-3, caspase-7, Bax, Bcl-2, p-Akt, P-glycoprotein (P-gp), and multidrug resistance protein 1 (MRP1) were evaluated. Results The results indicated that in the in vivo CRC xenograft model, NPRL2 reduced the tumor volume and weight and enhanced apoptosis. Our results also confirmed that NPRL2 enhanced the sensitivity of CRC cells to L-OHP and 5-FU. Our studies further demonstrated that NPRL2 exerted anti-tumor and anti-drug resistance effects through the caspase-3, caspase-7, Bax, Bcl-2, Akt, P-gp, and MRP1 pathways. Conclusion Our present work demonstrated that NPRL2 exhibited anti-tumor effects and enhanced the sensitivities of CRC cells to L-OHP and 5-FU through the P-gp and MRP1 pathways.
Collapse
Affiliation(s)
- Aiyun Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jiutao Qiao
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Liyuan He
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Zhangmeng Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jing Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Fenghua Pei
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yaju Du
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
5
|
Targeting NPRL2 to enhance the efficacy of Olaparib in castration-resistant prostate cancer. Biochem Biophys Res Commun 2019; 508:620-625. [DOI: 10.1016/j.bbrc.2018.11.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/11/2018] [Indexed: 01/09/2023]
|
6
|
Wang K, Ruan H, Song Z, Cao Q, Bao L, Liu D, Xu T, Xiao H, Wang C, Cheng G, Tong J, Meng X, Yang H, Chen K, Zhang X. PLIN3 is up-regulated and correlates with poor prognosis in clear cell renal cell carcinoma. Urol Oncol 2018; 36:343.e9-343.e19. [PMID: 29773494 DOI: 10.1016/j.urolonc.2018.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/15/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND PLIN3, one of the members of the perilipin family, has been reported to be involved in the formation and accumulation of lipid droplets. However, the expression levels and diagnostic and prognostic value of PLIN3 in renal cell carcinoma (RCC) remain unclear. METHODS Bioinformatic analysis was used to assess the levels of PLIN3 and the correlation between PLIN3 levels and clinicopathological parameters in renal cancer. The expression levels of PLIN3 were determined in human RCC tissues and cell lines by western blot, immunofluorescence and immunohistochemistry assays. Receiver operating characteristic curves and Kaplan-Meier curves were used to analyze the diagnostic and prognostic significance of PLIN3 in RCC. RESULTS The expression level of PLIN3 was elevated in RCC tissues and cell lines, which was consistent with the analysis of the TCGA and Oncomine cancer database. The receiver operating characteristic curve indicated that high PLIN3 expression can distinguish cancer tissues from normal kidney tissues (area under the curve = 0.7270, P<0.0001). Kaplan-Meier curves revealed that elevated PLIN3 predicted poor disease-free survival and overall survival. CONCLUSIONS PLIN3 is highly expressed in kidney cancer, and high expression of PLIN3 can serve as a useful diagnostic and prognostic biomarker. PLIN3 functional inhibition can be used as a new clinical treatment option.
Collapse
Affiliation(s)
- Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - HaiLong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ZhengShuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - TianBo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - HaiBing Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - JunWei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - XianGui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - HongMei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - XiaoPing Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
High expression of NPRL2 is linked to poor prognosis in patients with prostate cancer. Hum Pathol 2018; 76:141-148. [DOI: 10.1016/j.humpath.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 02/05/2023]
|
8
|
Zeng Y, Shi XB, Yuan ZY, Ye M, Jiang L, Chen ZX, Xiong J, Tang W. Biological characteristics of renal cancer cells after CTP-mediated cancer suppressor gene NPRL2 protein treatment. Biol Chem 2016; 397:1163-1171. [DOI: 10.1515/hsz-2016-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/12/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Nitrogen permease regulator like-2 (NPRL2) has been proved to be a useful suppressor gene in treating many cancers containing renal cancer based on experiments. Transgenic technology which transfect exogenous NPRL2 gene into cancer cell was used in these experiments. However, this technology has defects, such as gene mutation and loss. Cytoplasmic transduction peptide (CTP) can be used to avoid these defects because it can directly mediate proteins to penetrate cell membrane and specifically locate in cytoplasm. In this article, CTP was used to directly mediate NPRL2 protein into the renal cancer cell line 786-O, then cell proliferation was detected by the CCK-8 method, cell cycle and apoptosis were detected by flow cytometry, cell invasion and migration ability were detected by the Transwell assay. Bcl-xl, Cyt-c and caspase-3 were detected by real-time fluorescent quantitative PCR and Western blot for the analysis of the related mechanism. The result showed that CTP successfully mediated NPRL2 protein into renal cancer cells and the growth of cells was significantly inhibited. The mechanism may be NPRL2 down-regulating the expression of Bcl-xl which can up-regulate Cyt-c and further activate caspase-3, and then a cascade reaction is caused for cell apoptosis on the classic mitochondrial apoptosis pathway.
Collapse
|
9
|
Powis K, De Virgilio C. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling. Cell Discov 2016; 2:15049. [PMID: 27462445 PMCID: PMC4860963 DOI: 10.1038/celldisc.2015.49] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/02/2015] [Indexed: 12/16/2022] Open
Abstract
The highly conserved target of rapamycin complex 1 (TORC1) is the central component of a signaling network that couples a vast range of internal and external stimuli to cell growth, proliferation and metabolism. TORC1 deregulation is associated with a number of human pathologies, including many cancers and metabolic disorders, underscoring its importance in cellular and organismal growth control. The activity of TORC1 is modulated by multiple inputs; however, the presence of amino acids is a stimulus that is essential for its activation. Amino acid sufficiency is communicated to TORC1 via the highly conserved family of Rag GTPases, which assemble as heterodimeric complexes on lysosomal/vacuolar membranes and are regulated by their guanine nucleotide loading status. Studies in yeast, fly and mammalian model systems have revealed a multitude of conserved Rag GTPase modulators, which have greatly expanded our understanding of amino acid sensing by TORC1. Here we review the major known modulators of the Rag GTPases, focusing on recent mechanistic insights that highlight the evolutionary conservation and divergence of amino acid signaling to TORC1.
Collapse
Affiliation(s)
- Katie Powis
- Department of Biology, University of Fribourg , Fribourg, Switzerland
| | | |
Collapse
|
10
|
Huang N, Cheng S, Mi X, Tian Q, Huang Q, Wang F, Xu Z, Xie Z, Chen J, Cheng Y. Downregulation of nitrogen permease regulator like-2 activates PDK1-AKT1 and contributes to the malignant growth of glioma cells. Mol Carcinog 2015; 55:1613-1626. [PMID: 26455908 DOI: 10.1002/mc.22413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Ning Huang
- Department of Neurosurgery; The Second Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Si Cheng
- Department of Orthopaedics; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Xiujuan Mi
- Department of neurology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory of Neurology; Chongqing China
| | - Qin Tian
- Department of Neurosurgery; The Second Affiliated Hospital of Chongqing Medical University; Chongqing China
- Institute of Life Sciences; Chongqing Medical University; Chongqing China
| | - Qin Huang
- Department of Neurosurgery; The Second Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Feng Wang
- Department of Neurosurgery; The Second Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Zongye Xu
- Department of Neurosurgery; The Second Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Zongyi Xie
- Department of Neurosurgery; The Second Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Jin Chen
- Department of Neurosurgery; The Second Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Yuan Cheng
- Department of Neurosurgery; The Second Affiliated Hospital of Chongqing Medical University; Chongqing China
| |
Collapse
|
11
|
Braga EA, Khodyrev DS, Loginov VI, Pronina IV, Senchenko VN, Dmitriev AA, Kubatiev AA, Kushlinskii NE. Methylation in the regulation of the expression of chromosome 3 and microRNA genes in clear-cell renal cell carcinomas. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415050026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Dokudovskaya S, Rout MP. SEA you later alli-GATOR--a dynamic regulator of the TORC1 stress response pathway. J Cell Sci 2015; 128:2219-28. [PMID: 25934700 DOI: 10.1242/jcs.168922] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells constantly adapt to various environmental changes and stresses. The way in which nutrient and stress levels in a cell feed back to control metabolism and growth are, unsurprisingly, extremely complex, as responding with great sensitivity and speed to the 'feast or famine, slack or stress' status of its environment is a central goal for any organism. The highly conserved target of rapamycin complex 1 (TORC1) controls eukaryotic cell growth and response to a variety of signals, including nutrients, hormones and stresses, and plays the key role in the regulation of autophagy. A lot of attention has been paid recently to the factors in this pathway functioning upstream of TORC1. In this Commentary, we focus on a major, newly discovered upstream regulator of TORC1--the multiprotein SEA complex, also known as GATOR. We describe the structural and functional features of the yeast complex and its mammalian homolog, and their involvement in the regulation of the TORC1 pathway and TORC1-independent processes. We will also provide an overview of the consequences of GATOR deregulation in cancer and other diseases.
Collapse
Affiliation(s)
- Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|