1
|
Zhuo L, Chen W, Xing L, Li X, Song Z, Dong J, Zhang Y, Li H, Cui J, Han Y, Hao J, Wang J, Yin X, Li C. MRI-based quantification of intratumoral heterogeneity for intrahepatic mass-forming cholangiocarcinoma grading: a multicenter study. Insights Imaging 2025; 16:101. [PMID: 40369381 PMCID: PMC12078897 DOI: 10.1186/s13244-025-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/27/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVE This study aimed to develop a quantitative approach to measure intratumor heterogeneity (ITH) using MRI scans and predict the pathological grading of intrahepatic mass-forming cholangiocarcinoma (IMCC). METHODS Preoperative MRI scans from IMCC patients were retrospectively obtained from five academic medical centers, covering the period from March 2018 to April 2024. Radiomic features were extracted from the whole tumor and its subregions, which were segmented using K-means clustering. An ITH index was derived from a habitat model integrating output probabilities of the subregions-based models. Significant variables from clinical laboratory-imaging features, radiomics, and the habitat model were integrated into a predictive model, and its performance was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS The final training and internal validation datasets included 197 patients (median age, 59 years [IQR, 52-65 years]); the external validation dataset included 43 patients (median age, 58.5 years [IQR, 52.25-69.75 years]). The habitat model achieved AUCs of 0.847 (95% CI: 0.783, 0.911) in the training set and 0.753 (95% CI: 0.595, 0.911) in the internal validation set. Furthermore, the combined model, integrating imaging variables, the habitat model, and radiomics model, demonstrated improved predictive performance, with AUCs of 0.895 (95% CI: 0.845, 0.944) in the training dataset, 0.790 (95% CI: 0.65, 0.931) in the internal validation dataset, and 0.815 (95% CI: 0.68, 0.951) in the external validation dataset. CONCLUSION The combined model based on MRI-derived quantification of ITH, along with clinical, laboratory, radiological, and radiomic features, showed good performance in predicting IMCC grading. CRITICAL RELEVANCE STATEMENT This model, integrating MRI-derived intrahepatic mass-forming cholangiocarcinoma (IMCC) classification metrics with quantitative radiomic analysis of intratumor heterogeneity (ITH), demonstrates enhanced accuracy in tumor grade prediction, advancing risk stratification for clinical decision-making in IMCC management. KEY POINTS Grading of intrahepatic mass-forming cholangiocarcinoma (IMCC) is important for risk stratification, clinical decision-making, and personalized therapeutic optimization. Quantitative intratumor heterogeneity can accurately predict the pathological grading of IMCC. This combined model provides higher diagnostic accuracy.
Collapse
Affiliation(s)
- Liyong Zhuo
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Wenjing Chen
- Department of Research and Development, United Imaging Intelligence (Beijing) Co., Ltd., Beijing, People's Republic of China
| | - Lihong Xing
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Xiaomeng Li
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Zijun Song
- Department of Critical Care Medicine, Baoding First Central Hospital, Baoding, People's Republic of China
| | - Jinghui Dong
- Department of Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yanyan Zhang
- Department of Radiology, Beijing You'an Hospital, Beijing, People's Republic of China
| | - Hongjun Li
- Department of Radiology, Beijing You'an Hospital, Beijing, People's Republic of China
| | - Jingjing Cui
- Department of Research and Development, United Imaging Intelligence (Beijing) Co., Ltd., Beijing, People's Republic of China
| | - Yuxiao Han
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Jiawei Hao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Jianing Wang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Xiaoping Yin
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China.
| | - Caiying Li
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
2
|
Spencer KR, King GG. MDM2 as a therapeutic target in advanced biliary tract cancers. Oncologist 2025; 30:oyaf094. [PMID: 40421959 PMCID: PMC12107537 DOI: 10.1093/oncolo/oyaf094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/08/2025] [Indexed: 05/28/2025] Open
Abstract
Biliary tract cancers (BTCs) are a heterogeneous group of tumors arising from cells in the bile ducts and gallbladder. The 5-year overall survival rate for all BTC stages combined is ~20%, and treatment options for patients with unresectable disease are limited, leaving an unmet clinical need. In recent years, significant efforts have been made to refine and implement targeted therapeutic approaches for patients with BTC. The adoption of early and comprehensive molecular profiling is crucial to identifying patients who may be candidates for effective targeted therapies. Characterization of the molecular landscape of BTCs led to the identification of murine double minute 2 homolog gene (MDM2) amplification across all BTC subtypes. The MDM2 protein is a critical negative regulator of p53 stabilization and activity that is an emerging actionable biomarker in BTCs. There are multiple therapeutic approaches that aim to target MDM2 activity, thereby restoring the intrinsic tumor suppressor function of p53 and halting oncogenesis. However, these have been limited by our evolving understanding of the role of MDM2 in BTC pathogenesis. Here, we offer a review of the current understanding of the role of MDM2 in BTC biology and its therapeutic implications.
Collapse
Affiliation(s)
- Kristen R Spencer
- Department of Medicine at NYU Grossman School of Medicine, NYU Langone Perlmutter Cancer Center, New York, NY 10016, United States
| | - Gentry G King
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, United States
| |
Collapse
|
3
|
Woo S, Kim Y, Hwang S, Chon HJ. Epidemiology and genomic features of biliary tract cancer and its unique features in Korea. JOURNAL OF LIVER CANCER 2025; 25:41-51. [PMID: 40033637 PMCID: PMC12010822 DOI: 10.17998/jlc.2025.02.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Biliary tract cancer (BTC) is a rare but highly aggressive malignancy that includes intrahepatic cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma, and gallbladder cancer (GBC). While BTC has a low global incidence, its regional variations are notable. Among nations, Korea has the second-highest incidence of BTC globally, with the highest mortality rate worldwide, underscoring the need for a deeper understanding of this cancer. Liver fluke infection and hepatitis B virus infection are key risk factors unique to Korea, contributing to regional differences in BTC incidence. Additionally, genomic alterations in Korean patients with BTC differ from those in other populations, including lower frequencies of IDH1 mutations and FGFR2 fusions in ICC and a higher prevalence of ERBB2 amplification in GBC. Recognizing the clinical significance of these alterations, ivosidenib and pemigatinib have been approved in Korea for BTC patients with IDH1 mutations and FGFR2 fusions, respectively. This review explores the epidemiology, risk factors, and molecular features of BTC, along with corresponding targeted therapies. Furthermore, we compare the unique characteristics of BTC in Korea with global data to inform future research and clinical practice.
Collapse
Affiliation(s)
- Seonjeong Woo
- Department of Life Science, CHA University, Seongnam, Korea
| | - Youngun Kim
- Department of Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical Center, Seongnam, Korea
| | - Hong Jae Chon
- Department of Medical Oncology, CHA Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
4
|
Akita M, Yanagimoto H, Tsugawa D, Zen Y, Fukumoto T. Surgical interpretation of the WHO subclassification of intrahepatic cholangiocarcinoma: a narrative review. Surg Today 2025; 55:1-9. [PMID: 38563999 DOI: 10.1007/s00595-024-02825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) has been subclassified by its gross morphology into the mass-forming (MF), periductal-infiltrating (PI), and intraductal growth (IG) types and their combinations. This classification correlates well with clinical features; for example, MF-iCCA has less lymph-node metastasis and a better prognosis than PI-iCCA. According to the recently accumulated evidence from histological investigations, the WHO classification endorsed a subclassification scheme in which iCCA cases are classified into small- and large-duct types. Small-duct iCCA is considered to originate from septal or smaller bile ducts and is characterized by less frequent lymph-node metastasis, a favorable prognosis, and an MF appearance. Large-duct iCCA arises around the second branch of the biliary tree and has more aggressive biology and distinct genetic abnormalities. According to the practice guidelines for iCCA from the Liver Cancer Study Group of Japan and the National Comprehensive Cancer Network, upfront surgery is recommended for iCCA without distant metastasis regardless of the morphological subtype, based on clinical experience. In consideration of the biological heterogeneity of iCCA, the treatment strategy for iCCA needs to be reconsidered based on the WHO subtypes.
Collapse
Affiliation(s)
- Masayuki Akita
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hiroaki Yanagimoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| | - Daisuke Tsugawa
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| |
Collapse
|
5
|
Okano H, Asakawa H, Mukai K, Nishimura A, Hamada T, Asakawa K, Baba Y, Murata T. A Case of Resectable Single-Nodule Intrahepatic Bile Duct Adenoma. Cureus 2024; 16:e71656. [PMID: 39553064 PMCID: PMC11567730 DOI: 10.7759/cureus.71656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
A 70-year-old man was incidentally diagnosed with a single hepatic mass lesion in his right hepatic lobe during a computed tomography scan. The lesion exhibited consistent enhancement with contrast agents on computed tomography (CT), magnetic resonance imaging (MRI), and hepatic arterial angiography. While a definitive diagnosis could not be made preoperatively, the lesion was surgically resected due to its slight enlargement over two months, suggesting a potential malignancy. Pathological examination revealed the lesion to be a bile duct adenoma (BDA). The BDA was characterized by dense proliferative small gland cavities containing several to dozens of cells. Immunohistochemical staining showed positive CK7 and negative p53. The patient remains alive and free of recurrence five years after hepatectomy. Although BDAs are rare benign hepatic tumors, they carry a risk of harboring or developing malignant tissue, such as cholangiocarcinoma. Therefore, BDAs or lesions suspicious of BDA should be surgically resected or closely monitored.
Collapse
Affiliation(s)
- Hiroshi Okano
- Gastroenterology, Suzuka General Hospital, Suzuka, JPN
| | - Hiroki Asakawa
- Gastroenterology, Suzuka general hospital, Suzuka, JPN
- Internal Medicine, Suzuka Kaisei Hospital, Suzuka, JPN
| | - Katsumi Mukai
- Gastroenterology, Suzuka General Hospital, Suzuka, JPN
| | | | | | | | | | | |
Collapse
|
6
|
Onoe M, Fukuba N, Kodama Y, Oka A, Kawashima K, Shibagaki K, Ishimura N, Kushiyama Y, Uchida Y, Furukawa T, Ishihara S. Multiple intraductal papillary neoplasms of bile duct diagnosed based on endoscopic ultrasonography and peroral cholangioscopy findings. Clin J Gastroenterol 2024; 17:962-969. [PMID: 38971959 PMCID: PMC11436404 DOI: 10.1007/s12328-024-02000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/02/2024] [Indexed: 07/08/2024]
Abstract
A man in his 30s was referred to our department for evaluation of bile duct stricture and removal of an intrahepatic bile duct stone. Five years before his presentation, he underwent left hepatectomy for a giant hepatic hemangioma. There were no abnormalities in blood biochemical tests. Magnetic resonance cholangiopancreatography showed one 5 mm oval defect in region B6 and two 8 mm semicircular defects in the hilar bile duct. Endoscopic ultrasound revealed a 3.5 mm hypoechoic focal raised lesion in the hilar bile duct. Oral cholangioscopy revealed his two lesions in the hilar bile duct as white papillary elevations with mucus production. The pathological diagnosis of intraductal papillary neoplasm was determined (low-grade dysplasia, type 1, gastric type). After 1 and a half years, no expansion of the bile duct lesion was observed. Initially, it was thought to be a benign stenosis after liver resection, but based on the results of endoscopic ultrasound, we suspected a tumorous lesion, and we were able to make an accurate diagnosis, including histological type, using transoral cholangioscopy.
Collapse
Affiliation(s)
- Masaki Onoe
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Nobuhiko Fukuba
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan.
| | - Yasuhide Kodama
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Akihiko Oka
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Kousaku Kawashima
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Kotaro Shibagaki
- Division of Endoscopy, Shimane University Hospital, Izumo, Japan
| | - Norihisa Ishimura
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Yoshinori Kushiyama
- Department of Gastroenterology, Matsue Red Cross Hospital, Izumo, Shimane, Japan
| | - Yasushi Uchida
- Department of Gastroenterology, Matsue Red Cross Hospital, Izumo, Shimane, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunji Ishihara
- Department of Gastroenterology and Hepatology, Shimane University School of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| |
Collapse
|
7
|
Xing LH, Wang SP, Zhuo LY, Zhang Y, Wang JN, Ma ZP, Zhao YJ, Yuan SR, Zu QH, Yin XP. Comparison of Machine Learning Models Using Diffusion-Weighted Images for Pathological Grade of Intrahepatic Mass-Forming Cholangiocarcinoma. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2252-2263. [PMID: 38627269 PMCID: PMC11522244 DOI: 10.1007/s10278-024-01103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 10/30/2024]
Abstract
Is the radiomic approach, utilizing diffusion-weighted imaging (DWI), capable of predicting the various pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC)? Furthermore, which model demonstrates superior performance among the diverse algorithms currently available? The objective of our study is to develop DWI radiomic models based on different machine learning algorithms and identify the optimal prediction model. We undertook a retrospective analysis of the DWI data of 77 patients with IMCC confirmed by pathological testing. Fifty-seven patients initially included in the study were randomly assigned to either the training set or the validation set in a ratio of 7:3. We established four different classifier models, namely random forest (RF), support vector machines (SVM), logistic regression (LR), and gradient boosting decision tree (GBDT), by manually contouring the region of interest and extracting prominent radiomic features. An external validation of the model was performed with the DWI data of 20 patients with IMCC who were subsequently included in the study. The area under the receiver operating curve (AUC), accuracy (ACC), precision (PRE), sensitivity (REC), and F1 score were used to evaluate the diagnostic performance of the model. Following the process of feature selection, a total of nine features were retained, with skewness being the most crucial radiomic feature demonstrating the highest diagnostic performance, followed by Gray Level Co-occurrence Matrix lmc1 (glcm-lmc1) and kurtosis, whose diagnostic performances were slightly inferior to skewness. Skewness and kurtosis showed a negative correlation with the pathological grading of IMCC, while glcm-lmc1 exhibited a positive correlation with the IMCC pathological grade. Compared with the other three models, the SVM radiomic model had the best diagnostic performance with an AUC of 0.957, an accuracy of 88.2%, a sensitivity of 85.7%, a precision of 85.7%, and an F1 score of 85.7% in the training set, as well as an AUC of 0.829, an accuracy of 76.5%, a sensitivity of 71.4%, a precision of 71.4%, and an F1 score of 71.4% in the external validation set. The DWI-based radiomic model proved to be efficacious in predicting the pathological grade of IMCC. The model with the SVM classifier algorithm had the best prediction efficiency and robustness. Consequently, this SVM-based model can be further explored as an option for a non-invasive preoperative prediction method in clinical practice.
Collapse
Affiliation(s)
- Li-Hong Xing
- College of Clinical Medicine, Hebei University, Baoding, 071000, China
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Shu-Ping Wang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Li-Yong Zhuo
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Yu Zhang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Jia-Ning Wang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Ze-Peng Ma
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Ying-Jia Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Shuang-Rui Yuan
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Qian-He Zu
- Clinical Medicine, College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Xiao-Ping Yin
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China.
| |
Collapse
|
8
|
Masetto F, Mafficini A, Saka B, Armutlu A, Chatterjee D, Jang KT, Zen Y, Navale P, Fassan M, Bacchi CE, Mattiolo P, Simbolo M, Ruzzenente A, Lawlor RT, Reid M, Basturk O, Adsay V, Scarpa A, Luchini C. Tubulocystic Carcinoma of Bile Ducts: A Distinct Type of Cholangiocarcinoma Associated With Adenofibroma-type Lesions. Am J Surg Pathol 2024; 48:1082-1092. [PMID: 38946053 DOI: 10.1097/pas.0000000000002278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A type of cholangiocarcinoma (CCA) characterized by peculiar histologic patterns and underlying adenofibromatous lesions has been reported in the literature mostly as individual case reports. This study aims to further clarify the defining characteristics of this spectrum of lesions. Clinicopathologic analysis of 8 biliary tumors with tubulocystic architecture arising in the background of adenofibroma-type lesions was performed. Three of these were also investigated with next-generation sequencing with a 174 genes panel. The patients were 5 males and 3 females, with a mean age of 64.6. All tumors were intrahepatic except for one perihilar that protruded into soft tissues. The mean size was 4.4 cm. At histology, all cases showed a peculiar and cytologically bland tubulocystic pattern that closely resembled tubulocystic-type kidney cancers, including back-to-back microcystic units that formed relatively demarcated nodules, and occurring in the background of adenofibromatous lesions. One case showed perineural invasion by otherwise deceptively benign-appearing microcystic structures, one had areas transitioning to intraductal tubulopapillary neoplasm, and 3 cases harbored more conventional small-duct CCA foci. In those 3 cases, both the tubulocystic and conventional CCA components were investigated by next-generation sequencing separately, and they shared the molecular alterations, including recurrent mutations in chromatin remodeling genes, such as ARID1A , BAP1 , and PBRM1 , and the actionable FGFR2-MCU fusion gene. In the limited follow-up, all but one were alive and free of disease after surgical resection. In conclusion, we described a distinct entity of CCA with specific histo-molecular features, for which we propose the designation of tubulocystic carcinoma of bile ducts.
Collapse
Affiliation(s)
- Francesca Masetto
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
- ARC-Net Research Center, University and Hospital Trust of Verona
| | - Burcu Saka
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ayse Armutlu
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Deyali Chatterjee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Pooja Navale
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, and Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | | | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
| | - Andrea Ruzzenente
- Department of Surgery, Dentistry, Gynecology and Pediatrics, Division of General and Hepatobiliary Surgery, University and Hospital Trust of Verona
| | - Rita T Lawlor
- ARC-Net Research Center, University and Hospital Trust of Verona
- Department of Engineering for Innovative Medicine (DIMI), University of Verona, Verona
| | - Michelle Reid
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
- ARC-Net Research Center, University and Hospital Trust of Verona
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona
- ARC-Net Research Center, University and Hospital Trust of Verona
| |
Collapse
|
9
|
Huang XH, Chen TX, Liu HL, Huang MW. A Review of Type 1 and Type 2 Intraductal Papillary Neoplasms of the Bile Duct. Curr Med Sci 2024; 44:485-493. [PMID: 38748369 DOI: 10.1007/s11596-024-2863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/29/2024] [Indexed: 06/29/2024]
Abstract
Intraductal papillary neoplasm of the bile duct (IPNB) is a heterogeneous disease similar to intraductal papillary mucinous neoplasm of the pancreas. These lesions have been recognized as one of the three major precancerous lesions in the biliary tract since 2010. In 2018, Japanese and Korean pathologists reached a consensus, classifying IPNBs into type l and type 2 IPNBs. IPNBs are more prevalent in male patients in East Asia and are closely related to diseases such as cholelithiasis and schistosomiasis. From a molecular genetic perspective, IPNBs exhibit early genetic variations, and different molecular pathways may be involved in the tumorigenesis of type 1 and type 2 IPNBs. The histological subtypes of IPNBs include gastric, intestinal, pancreaticobiliary, or oncocytic subtypes, but type 1 IPNBs typically exhibit more regular and well-organized histological features than type 2 IPNBs and are more commonly found in the intrahepatic bile ducts with abundant mucin. Due to the rarity of these lesions and the absence of specific clinical and laboratory features, imaging is crucial for the preoperative diagnosis of IPNB, with local bile duct dilation and growth along the bile ducts being the main imaging features. Surgical resection remains the optimal treatment for IPNBs, but negative bile duct margins and the removal of lymph nodes in the hepatic hilum significantly improve the postoperative survival rates for patients with IPNBs.
Collapse
Affiliation(s)
- Xia-Hui Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian-Xiang Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hong-Liang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ming-Wen Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
10
|
Evans M, Kendall T. Practical considerations for pathological diagnosis and molecular profiling of cholangiocarcinoma: an expert review for best practices. Expert Rev Mol Diagn 2024; 24:393-408. [PMID: 38752560 DOI: 10.1080/14737159.2024.2353696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Advances in precision medicine have expanded access to targeted therapies and demand for molecular profiling of cholangiocarcinoma (CCA) patients in routine clinical practice. However, pathologists face challenges in establishing a definitive intrahepatic CCA (iCCA) diagnosis while preserving sufficient tissue for molecular profiling. Additionally, they frequently face challenges in optimal tissue handling to preserve nucleic acid integrity. AREAS COVERED This article first identifies the challenges in establishing a definitive diagnosis of iCCA in a lesional liver biopsy while preserving sufficient tissue for molecular profiling. Then, the authors explore the clinical value of molecular profiling, the basic principles of single gene and next-generation sequencing (NGS) techniques, and the challenges in tissue sampling for genomic testing. They also propose an algorithm for best practice in tissue management for molecular profiling of CCA. EXPERT OPINION Several practical challenges face pathologists during tissue sampling and processing for molecular profiling. Optimized tissue processing, careful tissue handling, and selection of appropriate approaches to molecular testing are essential to ensure that the highest possible quality of diagnostic information is provided in the greatest proportion of cases.
Collapse
Affiliation(s)
- Matt Evans
- Cellular Pathologist, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | |
Collapse
|
11
|
Gang S, Kwon H, Song IH, Namgoong JM. Clinical implications of pediatric biliary intraepithelial neoplasia diagnosed from a choledochal cyst specimen. World J Surg Oncol 2024; 22:105. [PMID: 38643155 PMCID: PMC11031949 DOI: 10.1186/s12957-024-03384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/06/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Biliary intraepithelial neoplasia (BilIN), a noninvasive precursor of cholangiocarcinoma, can manifest malignant transformation. Since cholangiocarcinoma (CCA) may progress due to chronic inflammation in the bile ducts and gallbladder, choledochal cysts are considered a precursor to CCA. However, BilIN has rarely been reported in children, to date. METHODS We reviewed medical records of patients (< 18 years of age, n = 329) who underwent choledochal cyst excision at Asan Medical Center from 2008 to 2022. BilIN was diagnosed in 15 patients. Subsequent analyses were performed of the demographics, surgical procedures, clinical course, and outcomes in these patients. Subgroup analysis and multivariate logistic regression test were performed to identify factors influencing BilIN occurrence. RESULTS The mean age of the patients included in our study was 40.1 ± 47.6 months. In 15 patients, BilIN of various grades was diagnosed. Todani type I was prevalent in 80% of the patients. The median age at surgery was 17 months. During a mean follow-up of 63.3 ± 94.0 months, no adverse events such as stone formation in the remnant intrapancreatic common bile duct and intrahepatic duct or cholangiocarcinoma were observed, indicating a favorable outcome until now. CONCLUSIONS The potential progression of choledochal cysts to BilIN in children was demonstrated. These results could underscore the importance of early and comprehensive excision of choledochal cysts, including resection margins for associated lesions and more thorough postoperative surveillance in patients with or at risk of BilIN.
Collapse
Affiliation(s)
- Sujin Gang
- Department of Pediatric Surgery, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu Seoul, 05505, Republic of Korea
| | - Hyunhee Kwon
- Department of Pediatric Surgery, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu Seoul, 05505, Republic of Korea
| | - In Hye Song
- Department of Pathology, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu Seoul, 05505, Republic of Korea.
| | - Jung-Man Namgoong
- Department of Pathology, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu Seoul, 05505, Republic of Korea.
| |
Collapse
|
12
|
Wei Z, Xu B, Yin Y, Chang J, Li Z, Zhang Y, Che X, Bi X. MiR-380 inhibits the proliferation and invasion of cholangiocarcinoma cells by silencing LIS1. Cancer Cell Int 2024; 24:129. [PMID: 38582841 PMCID: PMC10998336 DOI: 10.1186/s12935-024-03241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/24/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND The objective of this study was to determine the role and regulatory mechanism of miR-380 in cholangiocarcinoma. METHODS The TargetScan database and a dual-luciferase reporter assay system were used to determine if LIS1 was a target gene of miR-380. The Cell Counting Kit 8 assay, flow cytometry, and Transwell assay were used to detect the effects of miR-380 and LIS1 on the proliferation, S-phase ratio, and invasiveness of HCCC-9810/HuCCT1/QBC939 cells. Western blotting was used to determine the effect of miR-380 on MMP-2/p-AKT. Immunohistochemistry detected the regulatory effect of miR-380 on the expression of MMP-2/p-AKT/LIS1. RESULTS Expression of miR-380 in cholangiocarcinoma was decreased but expression of LIS1 was increased. LIS1 was confirmed to be a target gene of miR-380. Transfection with miR-380 mimics inhibited the proliferation, S-phase arrest, and invasion of HCCC-9810/HuCCT1/QBC939 cells, and LIS1 reversed these inhibitory effects. miR-380 inhibitor promoted proliferation, S-phase ratio, and invasiveness of HCCC-9810/HuCCT1/QBC939 cells. si-LIS1 salvaged the promotive effect of miR-380 inhibitor. Overexpression of miR-380 inhibited expression of MMP-2/p-AKT/LIS1, but miR-380 inhibitor promoted their expression. CONCLUSION An imbalance of miR-380 expression is closely related to cholangiocarcinoma, and overexpression of miR-380 inhibits the expression of MMP-2/p-AKT by directly targeting LIS1.
Collapse
Affiliation(s)
- Zhicheng Wei
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Bowen Xu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Key Laboratory of Gene Editing Screening and Research and Development (R&D) of Digestive System Tumor Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanjiang Yin
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Key Laboratory of Gene Editing Screening and Research and Development (R&D) of Digestive System Tumor Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianping Chang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiyu Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yefan Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xu Che
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
13
|
Kodali S, Connor AA, Thabet S, Brombosz EW, Ghobrial RM. Liver transplantation as an alternative for the treatment of intrahepatic cholangiocarcinoma: Past, present, and future directions. Hepatobiliary Pancreat Dis Int 2024; 23:129-138. [PMID: 37517983 DOI: 10.1016/j.hbpd.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a rare biliary tract cancer with high mortality rate. Complete resection of the iCCA lesion is the first choice of treatment, with good prognosis after margin-negative resection. Unfortunately, only 12%-40% of patients are eligible for resection at presentation due to cirrhosis, portal hypertension, or large tumor size. Liver transplantation (LT) offers margin-negative iCCA extirpation for patients with unresectable tumors. Initially, iCCA was a contraindication for LT until size-based selection criteria were introduced to identify patients with satisfied post-LT outcomes. Recent studies have shown that tumor biology-based selection can yield high post-LT survival in patients with locally advanced iCCA. Another selection criterion is the tumor response to neoadjuvant therapy. Patients with response to neoadjuvant therapy have better outcomes after LT compared with those without tumor response to neoadjuvant therapy. Another index that helps predict the treatment outcome is the biomarker. Improved survival outcomes have also opened the door for living donor LT for iCCA. Patients undergoing LT for iCCA now have statistically similar survival rates as patients undergoing resection. The combination of surgery and locoregional and systemic therapies improves the prognosis of iCCA patients.
Collapse
Affiliation(s)
- Sudha Kodali
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX 77030, USA; JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ashton A Connor
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX 77030, USA; JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | | | | | - R Mark Ghobrial
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, TX 77030, USA; JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
14
|
Caragut RL, Ilie M, Cabel T, Günșahin D, Panaitescu A, Pavel C, Plotogea OM, Rînja EM, Constantinescu G, Sandru V. Updates in Diagnosis and Endoscopic Management of Cholangiocarcinoma. Diagnostics (Basel) 2024; 14:490. [PMID: 38472961 DOI: 10.3390/diagnostics14050490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Cholangiocarcinoma (CCA) is an adenocarcinoma originating from the epithelial cells of the bile ducts/hepatocytes or peribiliary glands. There are three types of cholangiocarcinoma: intrahepatic, perihilar and distal. CCA represents approximately 3% of the gastrointestinal malignancies. The incidence of CCA is higher in regions of the Eastern world compared to the Western countries. There are multiple risk factors associated with cholangiocarcinoma such as liver fluke, primary sclerosing cholangitis, chronic hepatitis B, liver cirrhosis and non-alcoholic fatty liver disease. Endoscopy plays an important role in the diagnosis and management of cholangiocarcinoma. The main endoscopic methods used for diagnosis, biliary drainage and delivering intrabiliary local therapies are endoscopic retrograde cholangiopancreatography and endoscopic ultrasound. The purpose of this review is to analyze the current data found in literature about cholangiocarcinoma, with a focus on the actual diagnostic tools and endoscopic management options.
Collapse
Affiliation(s)
- Roxana-Luiza Caragut
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Madalina Ilie
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Teodor Cabel
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Deniz Günșahin
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Afrodita Panaitescu
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Christopher Pavel
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Oana Mihaela Plotogea
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Ecaterina Mihaela Rînja
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Gabriel Constantinescu
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| | - Vasile Sandru
- Clinical Department of Gastroenterology, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Department of Gastroenterology, University of Medicine and Pharmacy "Carol Davila" Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
15
|
Khosla D, Misra S, Chu PL, Guan P, Nada R, Gupta R, Kaewnarin K, Ko TK, Heng HL, Srinivasalu VK, Kapoor R, Singh D, Klanrit P, Sampattavanich S, Tan J, Kongpetch S, Jusakul A, Teh BT, Chan JY, Hong JH. Cholangiocarcinoma: Recent Advances in Molecular Pathobiology and Therapeutic Approaches. Cancers (Basel) 2024; 16:801. [PMID: 38398194 PMCID: PMC10887007 DOI: 10.3390/cancers16040801] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.
Collapse
Affiliation(s)
- Divya Khosla
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shagun Misra
- Department of Radiotherapy and Oncology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pek Lim Chu
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rajesh Gupta
- Department of GI Surgery, HPB, and Liver Transplantation, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Khwanta Kaewnarin
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Vijay Kumar Srinivasalu
- Department of Medical Oncology, Mazumdar Shaw Medical Center, NH Health City Campus, Bommasandra, Bangalore 560099, India
| | - Rakesh Kapoor
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deepika Singh
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand
| | - Jing Tan
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sarinya Kongpetch
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore 168583, Singapore
| | - Jing Han Hong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
16
|
Mishra S, Srivastava P, Pandey A, Shukla S, Agarwal A, Husain N. Diagnostic Utility of Next-Generation Sequencing in Circulating Free DNA and a Comparison With Matched Tissue in Gallbladder Carcinoma. J Transl Med 2024; 104:100301. [PMID: 38092180 DOI: 10.1016/j.labinv.2023.100301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024] Open
Abstract
Mutation detection for therapy monitoring in cell-free DNA (cfDNA) is used clinically for some malignancies. Gallbladder carcinoma (GBC) presents a diagnostic challenge and has limited late-stage treatment options. To our knowledge, this novel study examines, for the first time, genomic alterations in cfDNA from GBC to assess diagnostic accuracy and therapeutic options. The concordance of somatic genomic changes in cfDNA and DNA from paired tumor tissue was analyzed. Paired serum and tissue samples from 40 histologically proven GBC, 20 cholecystitis, and 4 normal (noninflamed gallbladder) controls were included. Targeted next-generation sequencing with a 22-gene panel (Colon and Lung Cancer Research Panel v2, Thermo Scientific) in cfDNA and tumor tissue with high depth and uniform coverage on ION Personal Genome Machine (ION, PGM) was performed. A spectrum of 223 mutations in cfDNA and 225 mutations in formalin-fixed paraffin-embedded tissue DNA were identified in 22 genes. Mutations ranged from 1 to 17 per case. In cfDNA frequent alterations were in TP53 (85.0%), EGFR (52.5%), MET (35%) CTNNB1, SMAD4, BRAF (32.5%), PTEN (30%), FGFR3 and PIK3CA (27.5%), NOTCH1 (25.0%), and FBXW7 and ERBB4 (22.5%). At least one clinically actionable mutation was identified in all cfDNA samples. Paired samples shared 149 of 225 genetic abnormalities (66.2%). Individual gene mutation concordance ranged from 44.44% to 82.0% and was highest for EGFR (82.0%), BRAF and NOTCH1 (80.0%), TP53 (73.08%), MET (72.22%), and ERBB4 (71.42%) with a significant level of correlation (Spearman r = 0.91, P ≤ .0001). The sensitivity and specificity of the TP53 gene at the gene level was the highest (94.44% and 100.0%, respectively). Overall survival was higher for ERBB4 and ERBB2 mutant tumors. The adenocarcinoma subtype revealed specific genetic changes in ERBB4, SMAD4, ERBB2, PTEN, KRAS, and NRAS. NGS-based cfDNA mutation profiling can be used to diagnose GBC before surgery to guide treatment decisions. Targeted therapy identified in GBC included SMAD4, ERBB2, ERBB4, EGFR, KRAS, BRAF, PIK3CA, MET, and NRAS.
Collapse
Affiliation(s)
- Sridhar Mishra
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Pallavi Srivastava
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anshuman Pandey
- Department of Gastrosurgery, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Saumya Shukla
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Akash Agarwal
- Department of Surgical Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nuzhat Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
17
|
Chen S, Wan L, Zhao R, Peng W, Liu X, Li L, Zhang H. Nomogram based on preoperative clinical and MRI features to estimate the microvascular invasion status and the prognosis of solitary intrahepatic mass-forming cholangiocarcinoma. Abdom Radiol (NY) 2024; 49:425-436. [PMID: 37889266 DOI: 10.1007/s00261-023-04079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To develop a nomogram based on preoperative clinical and magnetic resonance imaging (MRI) features for the microvascular invasion (MVI) status in solitary intrahepatic mass-forming cholangiocarcinoma (sIMCC) and to evaluate whether it could predict recurrence-free survival (RFS). METHODS We included 115 cases who experienced MRI examinations for sIMCC with R0 resection. The preoperative clinical and MRI features were extracted. Independent predictors related to MVI+ were evaluated by stepwise multivariate logistic regression, and a nomogram was constructed. A receiver operating characteristic (ROC) curve was used to assess the predictive ability. All patients were classified into high- and low-risk groups of MVI. Then, the correlations of the nomogram with RFS in patents with sIMCC were analyzed by Kaplan-Meier method. RESULTS The occurrence rate of MVI+ was 38.3% (44/115). The preoperative independent predictors of MVI+ were carbohydrate antigen 19-9 > 37 U/ml, tumor size > 5 cm, and an ill-defined tumor boundary. Integrating these predictors, the nomogram exerted a favorable diagnostic performance with areas under the ROC curve of 0.767 (95% confidence interval [CI] 0.654-0.881) in the development cohort, and 0.760 (95% CI 0.591-0.929) in the validation cohort. In the RFS analysis, significant differences were observed between the high- and low-risk MVI groups (6-month RFS rates: 64.5% vs. 78.8% and 46.7% vs. 82.4% in the development and validation cohorts, respectively) (P < 0.05). CONCLUSIONS A nomogram based on clinical and MRI features is a potential biomarker of MVI and may be a potent method to classify the risk of recurrence in patients with sIMCC.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Lijuan Wan
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Rui Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Wenjing Peng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Xiangchun Liu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Lin Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China.
| |
Collapse
|
18
|
Feng Y, Zhao M, Wang L, Li L, Lei JH, Zhou J, Chen J, Wu Y, Miao K, Deng CX. The heterogeneity of signaling pathways and drug responses in intrahepatic cholangiocarcinoma with distinct genetic mutations. Cell Death Dis 2024; 15:34. [PMID: 38212325 PMCID: PMC10784283 DOI: 10.1038/s41419-023-06406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.
Collapse
Affiliation(s)
- Yangyang Feng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ming Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lijian Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ling Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jingbo Zhou
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jinghong Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yumeng Wu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, China.
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
19
|
Dixon ME, Williams M, Pappas SG. Cholangiocarcinoma. Cancer Treat Res 2024; 192:165-184. [PMID: 39212921 DOI: 10.1007/978-3-031-61238-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cholangiocarcinoma (CC) is a heterogeneous group of malignancies that originates at any point along the biliary tree. CC is an uncommon malignancy as it represents approximately 3% of all gastrointestinal malignancies, though its global incidence is rising. CC can often be asymptomatic in its early stages and as a result, it is frequently diagnosed in later stages, leading to challenges in clinical management.
Collapse
Affiliation(s)
- Matthew E Dixon
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Michael Williams
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Sam G Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
20
|
Sharma R, Majee C, Mazumder R, Mazumder A, Tyagi PK, Chaitanya MVNL. Insight Into the Role of Alkaloids in the Different Signalling Pathways of Cholangiocarcinoma. JOURNAL OF NATURAL REMEDIES 2024:43-58. [DOI: 10.18311/jnr/2024/34661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 01/04/2025]
Abstract
Throughout the biliary tree, a variety of cells give rise to cholangiocarcinomas, a broad group of malignancies. The fact that these tumours are silent and asymptomatic, especially in their early stages, seriously impairs the effectiveness of available therapeutic options and contributes to their poor prognosis. Over the past few years, increased efforts have been made to identify the aetiology and signalling pathways of these tumours and to create more potent therapies. Since alkaloids are more potent and effective against cholangiocarcinoma cell lines, they have gained importance in the treatment of cholangiocarcinoma. In cell lines with cholangiocarcinoma, they promote apoptosis. and restrict the spread of cells, departure, and development. This review highlights the recent developments in the study of CCA, primarily concentrating on the regulation of the signalling pathway and revealing alkaloids demonstrating strong anti-cholangiocarcinoma efficacy, providing researchers with a rapid approach for the future development of powerful and efficient pharmaceutical compounds.
Collapse
|
21
|
Chen S, Wan L, Zhao R, Peng W, Liu X, Li L, Zhang H. Risk stratification for overall survival and recurrence-free survival after R0 resection for solitary intrahepatic mass-forming cholangiocarcinoma based on preoperative MRI and clinical features. Eur J Radiol 2023; 169:111190. [PMID: 37979460 DOI: 10.1016/j.ejrad.2023.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE This study aimed to establish two nomograms for predicting overall survival (OS) and recurrence-free survival (RFS) in patients with solitary intrahepatic mass-forming cholangiocarcinoma (IMCC) based on preoperative magnetic resonance imaging (MRI) features. METHODS This retrospective study included 120 consecutive patients who were diagnosed with solitary IMCC. Preoperative MRI and clinical features were collected. Based on the univariate and multivariate Cox regression analyses, two nomograms were constructed to predict OS and RFS, respectively. The effective performance of the nomograms was evaluated using concordance index (C-index). The prognostic stratification systems for OS and RFS were developed and used to classify patients into high- and low-risk groups. RESULTS Suspicious lymph nodes, arterial phase (AP) enhancement patterns, and bile duct dilatation were independent predictors of OS, while suspicious lymph nodes, AP enhancement patterns, and necrosis were independent predictors of RFS. The nomograms achieved the C-index values of 0.705/0.710 for OS and 0.721/0.759 for RFS in the development/validation cohorts, which were significantly higher than those of the T and TNM stages (P < 0.05). Patients were stratified into high- and low-risk groups, the 1-year OS and RFS rates of high-risk patients were poorer than those of patients with low-risk in the development cohort (OS: 93.5% vs 76.3%, P < 0.001; RFS: 74.5% vs 22.4%, P < 0.001). Similar results were observed in the validation cohort. CONCLUSIONS Two nomograms were constructed based on preoperative MRI features in patients with solitary IMCC for predicting the OS and RFS and facilitate further prognostic stratification.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Lijuan Wan
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Rui Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Wenjing Peng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xiangchun Liu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Lin Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
22
|
Chen W, Liu Q, Huang Z, Le C, Wang Y, Yang J. Cucurbitacin C as an effective anti-cancer agent: unveiling its potential role against cholangiocarcinoma and mechanistic insights. J Cancer Res Clin Oncol 2023; 149:13123-13136. [PMID: 37474681 DOI: 10.1007/s00432-023-05188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant epithelial tumor characterized by a dismal prognosis. Given the lack of therapeutic strategies and durable treatment options currently available, identifying innovative treatments for CCA is an urgent unmet clinical need. Cucurbitacin C (CuC) is a distinct variant of the cucurbitacin family, displaying promising anti-cancer activity against various tumor types. The primary objective of our research is to elucidate the promising effects of CuC on CCA. METHODS The impact of CuC on CCA cell lines was assessed by cell count kit-8 assay, EdU staining assay, colony formation assay, wound-healing assay, and Transwell assay. Flow cytometric analysis was conducted to explore the function of CuC treatments on cell-cycle distribution and apoptosis in CCA cells. Computational biology and network pharmacology approaches were utilized to predict potential targets of CuC. Furthermore, a tumor xenograft mouse model was established using CCA cells to explore the anti-cancer effects of CuC in vivo. RESULTS Our research findings revealed that CuC exerted a suppressive effect on CCA cell progression. Cell viability assays, EdU staining assays, and colony formation assays demonstrated that CuC effectively suppressed viability and proliferation of CCA cells. Wound-healing assays and Transwell assays indicated that CuC effectively inhibits the migratory and invasive capabilities of CCA cells. Flow cytometry analysis elucidated that CuC played its anti-proliferative role in CCA cells by arresting G0/G1 phase and increasing apoptosis. Through bioinformatics and network pharmacology analysis, in conjunction with western blot analysis, we demonstrated CuC mediated the inhibition of CCA cell progression through modulation of JAK2/STAT3 pathway. Additionally, the CCA xenograft tumor model was established, and the results supported the inhibition of CuC treatment against CCA progression in vivo. CONCLUSION Our study demonstrates that CuC possesses notable capabilities to suppress cell proliferation, migration, and invasion in CCA. Importantly, the inhibitory effects of CuC on CCA progression are attributed to its modulation of the JAK2/STAT3 signaling pathway. Altogether, our study demonstrated that CuC holds promise as a prospective therapeutic agent for treating CCA.
Collapse
Affiliation(s)
- Wangyang Chen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China
| | - Chenyu Le
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China
| | - Yu Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China.
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310003, Zhejiang Province, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
23
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Vasileiadi S, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Papageorgiou EG, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:15563. [PMID: 37958547 PMCID: PMC10649642 DOI: 10.3390/ijms242115563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cholangiocarcinomas (CCAs) constitute a heterogeneous group of highly malignant epithelial tumors arising from the biliary tree. This cluster of malignant tumors includes three distinct entities, the intrahepatic, perihilar, and distal CCAs, which are characterized by different epidemiological and molecular backgrounds, as well as prognosis and therapeutic approaches. The higher incidence of CCA over the last decades, the late diagnostic time that contributes to a high mortality and poor prognosis, as well as its chemoresistance, intensified the efforts of the scientific community for the development of novel diagnostic tools and therapeutic approaches. Extracellular vesicles (EVs) comprise highly heterogenic, multi-sized, membrane-enclosed nanostructures that are secreted by a large variety of cells via different routes of biogenesis. Their role in intercellular communication via their cargo that potentially contributes to disease development and progression, as well as their prospect as diagnostic biomarkers and therapeutic tools, has become the focus of interest of several current studies for several diseases, including CCA. The aim of this review is to give a rundown of the current knowledge regarding the emerging role of EVs in cholangiocarcinogenesis and their future perspectives as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 115 27 Athens, Greece;
| | - Sofia Vasileiadi
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
24
|
Mocchegiani F, Vincenzi P, Conte G, Nicolini D, Rossi R, Cacciaguerra AB, Vivarelli M. Intraductal papillary neoplasm of the bile duct: The new frontier of biliary pathology. World J Gastroenterol 2023; 29:5361-5373. [PMID: 37900587 PMCID: PMC10600795 DOI: 10.3748/wjg.v29.i38.5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Intraductal papillary neoplasms of the bile duct (IPNBs) represent a rare variant of biliary tumors characterized by a papillary growth within the bile duct lumen. Since their first description in 2001, several classifications have been proposed, mainly based on histopathological, radiological and clinical features, although no specific guidelines addressing their management have been developed. Bile duct neoplasms generally develop through a multistep process, involving different precursor pathways, ranging from the initial lesion, detectable only microscopically, i.e. biliary intraepithelial neoplasia, to the distinctive grades of IPNB until the final stage represented by invasive cholangiocarcinoma. Complex and advanced investigations, mainly relying on magnetic resonance imaging (MRI) and cholangioscopy, are required to reach a correct diagnosis and to define an adequate bile duct mapping, which supports proper treatment. The recently introduced subclassifications of types 1 and 2 highlight the histopathological and clinical aspects of IPNB, as well as their natural evolution with a particular focus on prognosis and survival. Aggressive surgical resection, including hepatectomy, pancreaticoduodenectomy or both, represents the treatment of choice, yielding optimal results in terms of survival, although several endoscopic approaches have been described. IPNBs are newly recognized preinvasive neoplasms of the bile duct with high malignant potential. The novel subclassification of types 1 and 2 defines the histological and clinical aspects, prognosis and survival. Diagnosis is mainly based on MRI and cholangioscopy. Surgical resection represents the mainstay of treatment, although endoscopic resection is currently applied to nonsurgically fit patients. New frontiers in genetic research have identified the processes underlying the carcinogenesis of IPNB, to identify targeted therapies.
Collapse
Affiliation(s)
- Federico Mocchegiani
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona 60126, Italy
| | - Paolo Vincenzi
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | - Grazia Conte
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | - Daniele Nicolini
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | - Roberta Rossi
- Department of Gastroenterology and Transplant, United Hospital of Marche, Ancona 60126, Italy
| | | | - Marco Vivarelli
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
25
|
Zhong B, Liao Q, Wang X, Wang X, Zhang J. The roles of epigenetic regulation in cholangiocarcinogenesis. Biomed Pharmacother 2023; 166:115290. [PMID: 37557012 DOI: 10.1016/j.biopha.2023.115290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous malignancy of bile duct epithelial cells, is characterized by aggressiveness, difficult diagnosis, and poor prognosis due to limited understanding and lack of effective therapeutic strategies. Genetic and epigenetic alterations accumulated in CCA cells can cause the aberrant regulation of oncogenes and tumor suppressors. Epigenetic alterations with histone modification, DNA methylation, and noncoding RNA modulation are associated with the carcinogenesis of CCA. Mutation or silencing of genes by various mechanisms can be a frequent event during CCA development. Alterations in histone acetylation/deacetylation at the posttranslational level, DNA methylation at promoters, and noncoding RNA regulation contribute to the heterogeneity of CCA and drive tumor development. In this review article, we mainly focus on the roles of epigenetic regulation in cholangiocarcinogenesis. Alterations in epigenetic modification can be potential targets for the therapeutic management of CCA, and epigenetic targets may become diagnostic biomarkers of CCA.
Collapse
Affiliation(s)
- Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaonong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
26
|
Reyes-Aldasoro CC. Modelling the Tumour Microenvironment, but What Exactly Do We Mean by "Model"? Cancers (Basel) 2023; 15:3796. [PMID: 37568612 PMCID: PMC10416922 DOI: 10.3390/cancers15153796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The Oxford English Dictionary includes 17 definitions for the word "model" as a noun and another 11 as a verb. Therefore, context is necessary to understand the meaning of the word model. For instance, "model railways" refer to replicas of railways and trains at a smaller scale and a "model student" refers to an exemplary individual. In some cases, a specific context, like cancer research, may not be sufficient to provide one specific meaning for model. Even if the context is narrowed, specifically, to research related to the tumour microenvironment, "model" can be understood in a wide variety of ways, from an animal model to a mathematical expression. This paper presents a review of different "models" of the tumour microenvironment, as grouped by different definitions of the word into four categories: model organisms, in vitro models, mathematical models and computational models. Then, the frequencies of different meanings of the word "model" related to the tumour microenvironment are measured from numbers of entries in the MEDLINE database of the United States National Library of Medicine at the National Institutes of Health. The frequencies of the main components of the microenvironment and the organ-related cancers modelled are also assessed quantitatively with specific keywords. Whilst animal models, particularly xenografts and mouse models, are the most commonly used "models", the number of these entries has been slowly decreasing. Mathematical models, as well as prognostic and risk models, follow in frequency, and these have been growing in use.
Collapse
|
27
|
Zeng X, Ou H, Zeng C, Liu Q, Wang W, Yao J. Multi-omics integrated analyzed the origin of intrahepatic mucinous cholangiocarcinoma: a case report. Front Oncol 2023; 13:1175707. [PMID: 37546424 PMCID: PMC10401833 DOI: 10.3389/fonc.2023.1175707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Intrahepatic mucinous cholangiocarcinoma (IMCC) is a rare subtype of intrahepatic cholangiocarcinoma (IHCC). Limited data describe the genetic characteristics of IMCC and insights on its pathogenesis are lacking. Here, we employed a multi-omics approach to analyze somatic mutations, transcriptome, proteome and metabolome of tumor tissue obtained from a case of IMCC in order to clarify the pathogenesis of IMCC. A total of 54 somatic mutations were detected, including a G12D mutation in KRAS that is likely to be involved in the onset of IMCC. The genes consistently up-regulated at the transcription level and in the proteome were enriched for mucin and mucopolysaccharide biosynthesis, for cell cycle functions and for inflammatory signaling pathways. The consistently down-regulated genes were enriched in bile synthesis and fatty acid metabolism pathways. Further multi-omics analysis found that mucin synthesis by MUC4 and MUC16 was elevated by up-regulated expression of mesothelin (MSLN). Moreover, transcription factor ONECUT3 was identified that possibly activates the transcription of mucin and mucopolysaccharide biosynthesis in IMCC.
Collapse
Affiliation(s)
- Xiaokang Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Huohui Ou
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Qingbo Liu
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jie Yao
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, China
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
28
|
Zhu X, Ni Q, Wang Q, Ma C, Yang F, Gao H, Zhu H, Zhou X, Chang H, Lu J, Liu F. Intraductal papillary mucinous neoplasm of the biliary tract in the caudate lobe of the liver: a case report and literature review. Front Oncol 2023; 13:1114514. [PMID: 37465111 PMCID: PMC10351580 DOI: 10.3389/fonc.2023.1114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 07/20/2023] Open
Abstract
An intraductal papillary mucinous neoplasm of the biliary tract (BT-IPMN) in the caudate lobe of the liver is a rare tumor originating from the bile duct. Approximately 40% of the intraductal papillary neoplasms of the biliary tract (IPNB) secrete mucus and can grow in the intrahepatic or extrahepatic bile ducts. A 65-year-old woman presented with recurrent episodes of right upper pain. She developed her first episode 8 years ago, which resolved spontaneously. The frequency of symptoms has increased in the last 2 years. She underwent laparoscopic hepatectomy and choledochal exploration and was pathologically diagnosed with a rare BT-IPMN of the caudate lobe after admission. Here, we review studies on IPNB cases and systematically describe the pathological type, diagnosis, and treatment of IPNB to provide a valuable reference for hepatobiliary surgeons in the diagnosis and treatment of this disease.
Collapse
|
29
|
Leowattana W, Leowattana T, Leowattana P. Paradigm shift of chemotherapy and systemic treatment for biliary tract cancer. World J Gastrointest Oncol 2023; 15:959-972. [PMID: 37389105 PMCID: PMC10302992 DOI: 10.4251/wjgo.v15.i6.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
Biliary tract cancers (BTC) are frequently identified at late stages and have a poor prognosis due to limited systemic treatment regimens. For more than a decade, the combination of gemcitabine and cis-platin has served as the first-line standard treatment. There are few choices for second-line chemo-therapy. Targeted treatment with fibroblast growth factor receptor 2 inhibitors, neurotrophic tyrosine receptor kinase inhibitors, and isocitrate dehydrogenase 1 inhibitors has had important results. Immune checkpoint inhibitors (ICI) such as pembrolizumab are only used in first-line treatment for microsatellite instability high patients. The TOPAZ-1 trial's outcome is encouraging, and there are several trials underway that might soon put targeted treatment and ICI combos into first-line options. Newer targets and agents for existing goals are being studied, which may represent a paradigm shift in BTC management. Due to a scarcity of targetable mutations and the higher toxicity profile of the current medications, the new category of drugs may occupy a significant role in BTC therapies.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Wattana 10110, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| |
Collapse
|
30
|
Sticova E, Fabian O. Morphological aspects of small-duct cholangiopathies: A minireview. World J Hepatol 2023; 15:538-553. [PMID: 37206655 PMCID: PMC10190694 DOI: 10.4254/wjh.v15.i4.538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
The biliary system consists of intrahepatic and extrahepatic bile ducts lined by biliary epithelial cells (cholangiocytes). Bile ducts and cholangiocytes are affected by a variety of disorders called cholangiopathies, which differ in aetiology, pathogenesis, and morphology. Classification of cholangiopathies is complex and reflects pathogenic mechanisms (immune-mediated, genetic, drug- and toxin-induced, ischaemic, infectious, neoplastic), predominant morphological patterns of biliary injury (suppurative and non-suppurative cholangitis, cholangiopathy), and specific segments of the biliary tree affected by the disease process. While the involvement of large extrahepatic and intrahepatic bile ducts is typically visualised using radiology imaging, histopathological examination of liver tissue obtained by percutaneous liver biopsy still plays an important role in the diagnosis of cholangiopathies affecting the small intrahepatic bile ducts. To increase the diagnostic yield of a liver biopsy and determine the optimal therapeutic approach, the referring clinician is tasked with interpreting the results of histopathological examination. This requires knowledge and understanding of basic morphological patterns of hepatobiliary injury and an ability to correlate microscopic findings with results obtained by imaging and laboratory methods. This minireview describes the morphological aspects of small-duct cholangiopathies pertaining to the diagnostic process.
Collapse
Affiliation(s)
- Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague 14021, Czech Republic
- Department of Pathology, The Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague 10000, Czech Republic
| | - Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague 14021, Czech Republic
- Department of Pathology and Molecular Medicine, The Third faculty of Medicine, Charles University and Thomayer University Hospital, Prague 14059, Czech Republic
| |
Collapse
|
31
|
Lluís N, Serradilla-Martín M, Achalandabaso M, Jehaes F, Dasari BV, Mambrilla-Herrero S, Sparrelid E, Balakrishnan A, Hoogwater FJ, Amaral MJ, Andersson B, Berrevoet F, Doussot A, López-López V, Alsammani M, Detry O, Domingo-del Pozo C, Machairas N, Pekli D, Alcázar-López CF, Asbun H, Björnsson B, Christophides T, Díez-Caballero A, Francart D, Noel CB, Sousa-Silva D, Toledo-Martínez E, Tzimas GN, Yaqub S, Cauchy F, Prieto-Calvo M, D’Souza MA, Spiers HV, van den Heuvel MC, Charco R, Lesurtel M, Ramia JM. Intraductal papillary neoplasms of the bile duct: a European retrospective multicenter observational study (EUR-IPNB study). Int J Surg 2023; 109:760-771. [PMID: 36917142 PMCID: PMC10389541 DOI: 10.1097/js9.0000000000000280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND/PURPOSE Intraductal papillary neoplasm of the bile duct (IPNB) is a rare disease in Western countries. The main aim of this study was to characterize current surgical strategies and outcomes in the mainly European participating centers. METHODS A multi-institutional retrospective series of patients with a diagnosis of IPNB undergoing surgery between 1 January 2010 and 31 December 2020 was gathered under the auspices of the European-African Hepato-Pancreato-Biliary Association. The textbook outcome (TO) was defined as a non-prolonged length of hospital stay plus the absence of any Clavien-Dindo grade at least III complications, readmission, or mortality within 90 postoperative days. RESULTS A total of 28 centers contributed 85 patients who underwent surgery for IPNB. The median age was 66 years (55-72), 49.4% were women, and 87.1% were Caucasian. Open surgery was performed in 72 patients (84.7%) and laparoscopic in 13 (15.3%). TO was achieved in 54.1% of patients, reaching 63.8% after liver resection and 32.0% after pancreas resection. Median overall survival was 5.72 years, with 5-year overall survival of 63% (95% CI: 50-82). Overall survival was better in patients with Charlson comorbidity score 4 or less versus more than 4 ( P =0.016), intrahepatic versus extrahepatic tumor ( P =0.027), single versus multiple tumors ( P =0.007), those who underwent hepatic versus pancreatic resection ( P =0.017), or achieved versus failed TO ( P =0.029). Multivariable Cox regression analysis showed that not achieving TO (HR: 4.20; 95% CI: 1.11-15.94; P =0.03) was an independent prognostic factor of poor overall survival. CONCLUSIONS Patients undergoing liver resection for IPNB were more likely to achieve a TO outcome than those requiring a pancreatic resection. Comorbidity, tumor location, and tumor multiplicity influenced overall survival. TO was an independent prognostic factor of overall survival.
Collapse
Affiliation(s)
- Núria Lluís
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, Miami, Florida, USA
| | - Mario Serradilla-Martín
- Department of Surgery, Instituto de Investigación Sanitaria Aragón, Miguel Servet University Hospital, Zaragoza
| | - Mar Achalandabaso
- HPB Surgery and Transplantation, Hospital Universitario Vall d’Hebron
| | - François Jehaes
- Department of HPB Surgery and Liver Transplantation, Beaujon Hospital, Assistance Publique Hôpitaux de Paris, University of Paris Cité, Clichy, France
| | - Bobby V.M. Dasari
- Liver Transplant and HPB Surgery, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Ernesto Sparrelid
- Department of Clinical Science, Division of Surgery, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | - Anita Balakrishnan
- Cambridge HPB Unit, Cambridge University Hospitals NHS Foundation Trust
- Department of Surgery, University of Cambridge, Cambridge
| | - Frederik J.H. Hoogwater
- Department of HPB Surgery and Liver Transplantation, and Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria J. Amaral
- Department of General Surgery, Centro Hospitalar e Universitário de Coimbra
- Faculty of Medicine, University of Coimbra, Coimbra
| | - Bodil Andersson
- Department of Surgery, Lund University
- Skane University Hospital, Lund
| | - Frederik Berrevoet
- Department of General and HPB Surgery, and Liver Transplantation, University Hospital Gent, Gent
| | - Alexandre Doussot
- Department of Digestive Surgical Oncology, Liver Transplantation Unit, CHU Besançon, Besancon
| | - Víctor López-López
- Department of General, Visceral and Transplantation Surgery, Clinic and University Hospital Virgen de La Arrixaca, IMIB-ARRIXACA, Murcia
| | | | - Olivier Detry
- Department of Abdominal Surgery and Transplantation, CHU Liege, University of Liege
| | | | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens
| | - Damján Pekli
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Cándido F. Alcázar-López
- HPB Surgery and Liver Transplantation, Dr. Balmis General University Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL)
| | - Horacio Asbun
- Division of Hepatobiliary and Pancreas Surgery, Miami Cancer Institute, Miami, Florida, USA
| | - Bergthor Björnsson
- Department of Surgery in Linköping and Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Thalis Christophides
- General Surgery Department, HPB Division, Nicosia General Hospital, Nicosia, Cyprus
| | | | - David Francart
- Department of Abdominal Surgery, CHC Groupe Santé, Liège, Belgium
| | - Colin B. Noel
- HPB Clinical Unit, Gastrointestinal Surgery, Universitas Academic Hospital, University of the Free State, Bloemfontein
| | - Donzília Sousa-Silva
- Department of Surgery, HEBIPA – Hepatobiliary and Pancreatic Unit, Hospital de Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Enrique Toledo-Martínez
- Servicio de Cirugía, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - George N. Tzimas
- Hepatobiliary Surgery Department, Hygeia Hospital, Athens, Greece
| | - Sheraz Yaqub
- Department of HPB Surgery, Oslo University Hospital
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - François Cauchy
- Department of HPB Surgery and Liver Transplantation, Beaujon Hospital, Assistance Publique Hôpitaux de Paris, University of Paris Cité, Clichy, France
| | - Mikel Prieto-Calvo
- Hepatobiliary Surgery and Liver Transplant Unit, Cruces University Hospital, Bilbao
| | - Melroy A. D’Souza
- Department of Clinical Science, Division of Surgery, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm
| | - Harry V.M. Spiers
- Cambridge HPB Unit, Cambridge University Hospitals NHS Foundation Trust
- Department of Surgery, University of Cambridge, Cambridge
| | - Marius C. van den Heuvel
- Department of HPB Surgery and Liver Transplantation, and Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ramón Charco
- HPB Surgery and Transplantation, Hospital Universitario Vall d’Hebron
| | - Mickaël Lesurtel
- Department of HPB Surgery and Liver Transplantation, Beaujon Hospital, Assistance Publique Hôpitaux de Paris, University of Paris Cité, Clichy, France
| | - José M. Ramia
- HPB Surgery and Liver Transplantation, Dr. Balmis General University Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL)
- Miguel Hernández University, Alicante
| |
Collapse
|
32
|
Nagao M, Mizukoshi K, Nakayama S, Namikawa M, Hiramatsu Y, Maruno T, Nakanishi Y, Tsuruyama T, Fukuda A, Seno H. p53 protects against formation of extrahepatic biliary precancerous lesions in the context of oncogenic Kras. Oncotarget 2023; 14:276-279. [PMID: 36999984 PMCID: PMC10064879 DOI: 10.18632/oncotarget.28380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/01/2023] Open
Abstract
KRAS and TP53 mutations are frequently observed in extrahepatic biliary cancer. Mutations of KRAS and TP53 are independent risk factors for poor prognosis in biliary cancer. However, the exact role of p53 in the development of extrahepatic biliary cancer remains elusive. In this study, we found that simultaneous activation of Kras and inactivation of p53 induces biliary neoplasms that resemble human biliary intraepithelial neoplasia in the extrahepatic bile duct and intracholecystic papillary-tubular neoplasm in the gall bladder in mice. However, inactivation of p53 was not sufficient for the progression of biliary precancerous lesions into invasive cancer in the context of oncogenic Kras within the observation period. This was also the case in the context of additional activation of the Wnt signaling pathway. Thus, p53 protects against formation of extrahepatic biliary precancerous lesions in the context of oncogenic Kras.
Collapse
|
33
|
Granata V, Fusco R, De Muzio F, Cutolo C, Grassi F, Brunese MC, Simonetti I, Catalano O, Gabelloni M, Pradella S, Danti G, Flammia F, Borgheresi A, Agostini A, Bruno F, Palumbo P, Ottaiano A, Izzo F, Giovagnoni A, Barile A, Gandolfo N, Miele V. Risk Assessment and Cholangiocarcinoma: Diagnostic Management and Artificial Intelligence. BIOLOGY 2023; 12:213. [PMID: 36829492 PMCID: PMC9952965 DOI: 10.3390/biology12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor, with a median survival of only 13 months. Surgical resection remains the only curative therapy; however, at first detection, only one-third of patients are at an early enough stage for this approach to be effective, thus rendering early diagnosis as an efficient approach to improving survival. Therefore, the identification of higher-risk patients, whose risk is correlated with genetic and pre-cancerous conditions, and the employment of non-invasive-screening modalities would be appropriate. For several at-risk patients, such as those suffering from primary sclerosing cholangitis or fibropolycystic liver disease, the use of periodic (6-12 months) imaging of the liver by ultrasound (US), magnetic Resonance Imaging (MRI)/cholangiopancreatography (MRCP), or computed tomography (CT) in association with serum CA19-9 measurement has been proposed. For liver cirrhosis patients, it has been proposed that at-risk iCCA patients are monitored in a similar fashion to at-risk HCC patients. The possibility of using Artificial Intelligence models to evaluate higher-risk patients could favor the diagnosis of these entities, although more data are needed to support the practical utility of these applications in the field of screening. For these reasons, it would be appropriate to develop screening programs in the research protocols setting. In fact, the success of these programs reauires patient compliance and multidisciplinary cooperation.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Orlando Catalano
- Radiology Unit, Istituto Diagnostico Varelli, Via Cornelia dei Gracchi 65, 80126 Naples, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56216 Pisa, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Federica Flammia
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Federico Bruno
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Pierpaolo Palumbo
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS-Fondazione G. Pascale, 80130 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
34
|
Nagao M, Fukuda A, Seno H. The role of Kras and canonical Wnt pathways for tumorigenesis of extrahepatic biliary system. Oncotarget 2023; 14:54-56. [PMID: 36702331 PMCID: PMC9882994 DOI: 10.18632/oncotarget.28349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
| | - Akihisa Fukuda
- Correspondence to:Akihisa Fukuda, Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan; Department of Gastroenterology and Hepatology, Tenri Hospital, Tenri, Nara 632-8552, Japan email
| | | |
Collapse
|
35
|
Gao R, Ke M, Shi J, Zhang Y, Zou J, Diao M, Li L. Establishment and validation of a predictive nomogram for the risk of premalignant lesions in children with choledochal cyst. Front Pediatr 2023; 11:1108788. [PMID: 36816382 PMCID: PMC9936067 DOI: 10.3389/fped.2023.1108788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Choledochal cyst (CDC) increases the risk (2.5%-30%) of malignancy. Metaplasia and dysplasia have been recognized as premalignant lesions among CDCs. This study aimed to evaluate the risk factors of metaplasia and dysplasia in CDC children. METHODS Two hundred and ten CDC children who underwent cyst excision and Roux-en-Y hepaticojejunostomy at our institution between July 2020 and November 2021 were included and randomly divided into the training set and validation set. Univariate and multivariate logistic regression analysis were used to identify independent risk factors of premalignant lesions in the training set and build a predictive nomogram. The performance and discriminatory abilities of the nomogram were further assessed and validated in the validation set. RESULTS Of the 210 CDC children, 78 (37.1%) patients developed premalignant lesions. Age (OR, 1.011, 95%CI, 1.000-1.022, P = 0.046), symptoms duration (OR, 1.021, 95%CI, 1.001-1.042, P = 0.036), cyst diameter (OR, 1.737, 95%CI, 1.328-2.273, P < 0.001), recurrent attacks of biliary pancreatitis (OR, 3.653, 95%CI, 1.205-11.076, P = 0.022), and biliary operation history (OR, 5.860, 95%CI, 1.268-27.084, P = 0.024) were identified as independent risk factors. Based on these predictors, a predictive nomogram was generated. The AUC of the nomogram was 0.873 in the training set and 0.793 in the validation set, indicating that it was robust and well calibrated. CONCLUSIONS A novel nomogram to the individualized risk of premalignant lesions in CDC children was successfully built, on the basis of age, symptoms duration, cyst diameter, recurrent attacks of biliary pancreatitis, and biliary operation history. This nomogram, combined with the final pathological results, can help clinicians to develop more efficient follow-up strategies for the high-risk children with CDC.
Collapse
Affiliation(s)
- Ruyue Gao
- Department of Pediatric Surgery, Children's Hospital Capital Institute of Pediatrics, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Ke
- Department of Pediatric Surgery, Children's Hospital Capital Institute of Pediatrics, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yandong Zhang
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jizhen Zou
- Department of Pathology, Children's Hospital Capital Institute of Pediatrics, Beijing, China
| | - Mei Diao
- Department of Pediatric Surgery, Children's Hospital Capital Institute of Pediatrics, Beijing, China
| | - Long Li
- Department of Pediatric Surgery, Children's Hospital Capital Institute of Pediatrics, Beijing, China.,Department of Pediatric Surgery, Beijing Tsinghua Changgung Hospital, Beijing, China.,Research Unit of Minimally Invasive Pediatric Surgery on Diagnosis and Treatment (2021RU015), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Guedj N. Pathology of Cholangiocarcinomas. Curr Oncol 2022; 30:370-380. [PMID: 36661679 PMCID: PMC9857472 DOI: 10.3390/curroncol30010030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cholangiocarcinomas (CCA) are heterogeneous tumors that arise from epithelial cells of the biliary tract. They represent the second primary liver malignancy, after hepatocellular carcinoma. Recent epidemiological data show an increased incidence of intrahepatic CCA without any identified causes. According to their location on the biliary tract, intrahepatic, perihilar (p) and distal (d) CCA can be individualized. Intrahepatic CCA (iCCA) are subdivided into small duct type iCCA and large duct type iCCA, according to the level or size of the biliary duct affected. These two subgroups are characterized by distinct risk factors, gross aspect, histopathological and molecular features, and therapeutic management. The role of biopsy in iCCA is to confirm the diagnosis and to eliminate various differential diagnostics, in particular, metastases. In p/d CCA, biopsy requires more invasive approaches, and tissue samples are difficult to obtain, leading to a high rate of false negatives. In this review, we will discuss the different classifications of CCA (anatomical and macroscopic). We will describe the various microscopic and phenotypic subtypes of CCA. Finally, we will deal with their mode of extension, the role of biopsy and pre-neoplastic lesions.
Collapse
Affiliation(s)
- Nathalie Guedj
- Department of Pathology, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110 Clichy, France
| |
Collapse
|
37
|
Zhang Z, Wang X, Nie P, Qin Y, Shi J, Xu S. DEPDC1B promotes development of cholangiocarcinoma through enhancing the stability of CDK1 and regulating malignant phenotypes. Front Oncol 2022; 12:842205. [PMID: 36568241 PMCID: PMC9769124 DOI: 10.3389/fonc.2022.842205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary tumor of the hepatobiliary system. At present, the therapeutic efficiency of cholangiocarcinoma is fairly low and the prognosis is poor. The root cause is that the molecular mechanism of the occurrence and development of CCA is largely unclear. This work intended to clarify the role of DEP domain-containing protein 1B (DEPDC1B) in the progress of CCA through cellular biology research strategies and further clarify the molecular mechanism of CCA. Clinical tissue-related detection showed that the expression level of DEPDC1B in tumor tissues was significantly higher than that in normal tissues and was positively correlated with tumor grade. Knockdown of the endogenous DEPDC1B of CCA cells can significantly inhibit cell proliferation and migration, while promoting cell apoptosis and blocking the cell cycle. DEPDC1B overexpression induced the opposite effects. Studies in animal models also showed that the downregulation of DEPDC1B can reduce the tumorigenicity of CCA cells. In addition, through gene profiling analysis and molecular biology studies, we found that CDK1 may be an important downstream mediator of DEPDC1B, the protein stability of which was significantly decreased through the ubiquitin-proteasome system in DEPDC1B knockdown cells. Moreover, knockdown of CDK1 can weaken the promotion of CCA caused by DEPDC1B overexpression. In summary, our research showed that DEPDC1B plays an important role in the development of CCA and its targeted inhibition may become one of the important methods to inhibit the progress of CCA.
Collapse
Affiliation(s)
- Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinxing Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peihua Nie
- Department of Ophthalmology and Otorhinolaryngology, Shandong Provincial Third hospital, Jinan, Shandong, China
| | - Yejun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junping Shi
- Medical Department, OrigiMed, Shanghai, China
| | - Shifeng Xu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
38
|
Storandt MH, Jin Z, Mahipal A. Pemigatinib in cholangiocarcinoma with a FGFR2 rearrangement or fusion. Expert Rev Anticancer Ther 2022; 22:1265-1274. [PMID: 36408971 DOI: 10.1080/14737140.2022.2150168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) accounts for approximately 3% of gastrointestinal malignancies and is associated with a high mortality rate. Recent progress in the understanding of cholangiocarcinoma tumorigenesis and molecular markers has led to the development of several targeted therapies applicable to this disease. Fibroblast growth factor receptor 2 (FGFR2) gene fusion or translocation, resulting in constitutive activation of the FGFR tyrosine kinase, has been identified as a driver of oncogenesis in 10-15% of intrahepatic CCA. Pemigatinib is an FGFR inhibitor that has demonstrated survival benefit in the second line setting for treatment of CCA with FGFR2 fusion or rearrangement refractory to chemotherapy. Pemigatinib was the first targeted therapy to be approved by the FDA for treatment of cholangiocarcinoma. AREAS COVERED This article reviews FGFR and its dysregulation in oncogenesis, FGFR inhibitors, especially pemigatinib, utilized in treatment of CCA, common adverse events associated with FGFR inhibitors, and future directions in the field of targeted drug development for CCA. EXPERT OPINION FGFR inhibitors, including pemigatinib, have shown promise in the management of CCA with FGFR2 fusion or rearrangement; however, acquired resistance remains a major barrier in the field of FGFR inhibitors and requires further study.
Collapse
Affiliation(s)
| | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.,Department of Oncology, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
39
|
Zhao F, Yang D, He J, Ju X, Ding Y, Li X. Establishment and validation of a prognostic nomogram for extrahepatic cholangiocarcinoma. Front Oncol 2022; 12:1007538. [PMID: 36505787 PMCID: PMC9730808 DOI: 10.3389/fonc.2022.1007538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Simple summary Accurately estimate the prognosis of patients with ECCA is important. However, the TNM system has some limitations, such as low accuracy, exclusion of other factors (e.g., age and sex), and poor performance in predicting individual survival risk. In contrast, a nomogram-based clinical model related to a comprehensive analysis of all risk factors is intuitive and straightforward, facilitating the probabilistic analysis of tumor-related risk factors. Simultaneously, a nomogram can also effectively drive personalized medicine and facilitate clinicians for prognosis prediction. Therefore, we construct a novel practical nomogram and risk stratification system to predict CSS in patients with ECCA. Background Accurately estimate the prognosis of patients with extrahepatic cholangiocarcinoma (ECCA) was important, but the existing staging system has limitations. The present study aimed to construct a novel practical nomogram and risk stratification system to predict cancer-specific survival (CSS) in ECCA patients. Methods 3415 patients diagnosed with ECCA between 2010 and 2015 were selected from the SEER database and randomized into a training cohort and a validation cohort at 7:3. The nomogram was identified and calibrated using the C-index, receiver operating characteristic curve (ROC), and calibration plots. Decision curve analysis (DCA), net reclassification index (NRI), integrated discrimination improvement (IDI) and the risk stratification were used to compare the nomogram with the AJCC staging system. Results Nine variables were selected to establish the nomogram. The C-index (training cohort:0.785; validation cohort:0.776) and time-dependent AUC (>0.7) showed satisfactory discrimination. The calibration plots also revealed that the nomogram was consistent with the actual observations. The NRI (training cohort: 1-, 2-, and 3-year CSS:0.27, 0.27,0.52; validation cohort:1-,2-,3-year CSS:0.48,0.13,0.34), IDI (training cohort: 1-, 2-, 3-year CSS:0.22,0.18,0.16; validation cohort: 1-,2-,3-year CSS:0.18,0.16,0.17), and DCA indicated that the established nomogram significantly outperformed the AJCC staging system (P<0.05) and had better recognition compared to the AJCC staging system. Conclusions We developed a practical prognostic nomogram to help clinicians assess the prognosis of patients with ECCA.
Collapse
Affiliation(s)
- Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiahui He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xianli Ju
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Youming Ding
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,*Correspondence: Youming Ding, ; Xiangpan Li,
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,*Correspondence: Youming Ding, ; Xiangpan Li,
| |
Collapse
|
40
|
Tomita H, Hara A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathol Int 2022; 72:589-605. [PMID: 36349994 PMCID: PMC10098476 DOI: 10.1111/pin.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| | - Akira Hara
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
41
|
A Case of Early-Stage Gallbladder Cancer, Positive for ALDH1A1, Which Arose from Adenomyomatosis of the Gallbladder. Diagnostics (Basel) 2022; 12:diagnostics12112721. [DOI: 10.3390/diagnostics12112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Adenomyomatosis (ADM) of the gallbladder is a condition characterized by the proliferation of Rokitansky–Aschoff sinus (RAS), in which the epithelium of the gallbladder extends into the muscular layer, causing a thickening of the gallbladder wall. Although ADM is generally considered not to be a precancerous lesion of gallbladder cancer, there are some reports of cases of gallbladder cancer from ADM. Therefore, the relationship between ADM and gallbladder cancer remains controversial. We herein report a case of early-stage gallbladder cancer, BilIN3 (high grade), arising from ADM that was positive for ALDH1A1, an important marker of stem cells and cancer stem cells.
Collapse
|
42
|
Chung A, Nasralla D, Quaglia A. Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. J Hepatocell Carcinoma 2022; 9:1149-1169. [PMID: 36349146 PMCID: PMC9637345 DOI: 10.2147/jhc.s382310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most common cancers worldwide, primary liver cancer remains a major cause of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma represent the majority of primary liver cancer cases. Despite advances in the development of novel anti-cancer therapies that exploit targets within the immune system, survival rates from liver cancer remain poor. Furthermore, responses to immunotherapies, such as immune checkpoint inhibitors, have revealed limited and variable responses amongst patients with hepatocellular carcinoma, although combination immunotherapies have shown recent breakthroughs in clinical trials. This has shifted the focus towards improving our understanding of the underlying immune and molecular characteristics of liver tumours that may influence their response to immune-modulating treatments. In this review, we outline the complex interactions that occur in the tumour microenvironment of hepatocellular carcinoma and cholangiocarcinoma, respectively, from a histopathological perspective. We explore the potential role of a classification system based on immune-specific characteristics within each cancer type, the importance of understanding inter- and intra-tumoural heterogeneity and consider the future role of histopathology and novel technologies within this field.
Collapse
Affiliation(s)
- Annabelle Chung
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - David Nasralla
- Department of Hepato-Pancreato-Biliary Surgery, Royal Free Hospital, London, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
43
|
Zeng C, Lin J, Zhang K, Ou H, Shen K, Liu Q, Wei Z, Dong X, Zeng X, Zeng L, Wang W, Yao J. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci 2022; 113:3766-3775. [PMID: 35968603 PMCID: PMC9633309 DOI: 10.1111/cas.15531] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022] Open
Abstract
SHARPIN is a tumor-associated gene involved in the growth and proliferation of many tumor types. A function of SHARPIN in cholangiocarcinoma (CCA) is so far unclear. Here, we studied the role and function of SHARPIN in CCA and revealed its relevant molecular mechanism. The expression of SHARPIN was analyzed in cholangiocarcinoma tissues from patients using immunohistochemistry, quantitative PCR, and western blot analysis. Expression of SHARPIN was suppressed/overexpressed by siRNA silencing or lentiviral overexpression vector, and the effect on cell proliferation was determined by the CCK-8 assay and flow cytometry. Accumulation of reactive oxygen species was measured with MitoTracker, and JC-1 staining showed mitochondrial fission/fusion and mitochondrial membrane potential changes as a result of the silencing or overexpression. The ferroptosis marker solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and the antioxidant enzymes superoxide dismutase 1 (SOD-1) and SOD-2 were analyzed by western blot. The results showed that SHARPIN expression was increased in CCA tissue, and this was involved in cell proliferation. SHARPIN silencing resulted in accumulated reactive oxygen species, reduced mitochondrial fission, and a reduced mitochondrial membrane potential. Silencing of SHARPIN inhibited the ubiquitination and degradation of p53, and downregulated levels of SLC7A11, GPX4, SOD-1, and SOD-2, all of which contributed to excessive oxidative stress that leads to ferroptosis. Overexpression of SHARPIN would reverse the above process. The collected data suggest that in CCA, SHARPIN-mediated cell ferroptosis via the p53/SLC7A11/GPX4 signaling pathway is inhibited. Targeting SHARPIN might be a promising approach for the treatment of CCA.
Collapse
Affiliation(s)
- Chong Zeng
- Department of Medical Research Center, Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde Foshan)FoshanChina
| | - Jie Lin
- Department of Hepatobiliary SurgeryShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanChina
| | - Ketao Zhang
- Department of Hepatobiliary SurgeryShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanChina
| | - Huohui Ou
- Department of Hepatobiliary SurgeryShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanChina
| | - Ke Shen
- Department of Pathology, Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanChina
| | - Qingbo Liu
- Department of Hepatobiliary SurgeryShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanChina
| | - Zibo Wei
- Department of Medical Research Center, Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde Foshan)FoshanChina
| | - Xinhuai Dong
- Department of Medical Research Center, Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde Foshan)FoshanChina
| | - Xiaokang Zeng
- Department of Medical Research Center, Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde Foshan)FoshanChina
| | - Liming Zeng
- Department of Medical Research Center, Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde Foshan)FoshanChina
| | - Weidong Wang
- Department of Hepatobiliary SurgeryShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanChina
| | - Jie Yao
- Department of Medical Research Center, Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde Foshan)FoshanChina
| |
Collapse
|
44
|
Low Complement Factor H-Related 3 (CFHR3) Expression Indicates Poor Prognosis and Immune Regulation in Cholangiocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1752827. [PMID: 36213819 PMCID: PMC9546675 DOI: 10.1155/2022/1752827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Background Cholangiocarcinoma (CCA) is a cancerous tumor that leads to a high rate of morbidity and death. Complement factor H-related 3 (CFHR3) is a gene belonging to the CFHR gene family. In this study, we investigated the usefulness of CFHR3 in the diagnostic stage and CCA prognosis prediction. In the interim, we looked at its coexpressed genes and their roles. The correlation between CFHR3 and immunological infiltration was also investigated. Methods The expression of the genes data and the clinical information were obtained from the databases of The Cancer Genome Atlas (TCGA) together with the Gene Expression Omnibus (GEO). The crucial gene was found to be the overlapping gene in the two databases. The area under the curve (AUC) and the Kaplan-Meier survival curve were used to describe the usefulness of the predictive prognosis of CCA patients. Univariate regression analysis and multivariate survival analysis were performed to find the independent prognosis factors. The PPI network was constructed based on the STRING database, and the coexpression approach was utilized in predicting the coexpression genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were also performed to identify the related functions. Additionally, the probable mechanism of the important gene was examined using gene set enrichment analysis (GSEA). The correlation between CFHR3 and immune infiltration was discovered using TIMER. The LncACTdb 3.0 database was used to analyze the location of CFHR3 in the cell. The cBioPortal database was used to find the mutation in CFHR3. Results TCGA datasets and GEO datasets revealed an elevated expression level of CFHR3 in normal tissues as well as a lower expression level in cholangiocarcinoma tissues in the present research. The low expression level of CFHR3 was related to an unfavorable prognosis. Using CFHR3 expression in diagnosis and predicting the patient prognosis (AUC = 1.000) is valuable. Using the CFHR3 gene and a time-lapse prediction, we could estimate survival rates over 1, 2, and 3 years. The AUC values were more than 0.6(AUC = 0.808; 0.760; 0.711). Functional enrichment analysis revealed a substantial correlation between this signature and complement and coagulation cascades. The same outcomes from GSEA were achieved. We found the key gene widely exists in the nucleus, exosomes, and cytoplasm of normal cells using the LncACTdb 3.0 database. In immune regulation analysis, we identified that the expression level of CFHR3 had a positive correlation with infiltrating levels of B cells, neutrophils, and macrophages, but correlated negatively with cholangiocarcinoma cells, CD8+ T cells, and monocytes.
Collapse
|
45
|
Eukaryotic Translation Initiation Factor 5A Independently Predicts Poor Prognosis of Cholangiocarcinoma Patients and Regulates the Ferroptosis and Mitochondrial Apoptosis. JOURNAL OF ONCOLOGY 2022; 2022:4250531. [PMID: 35874632 PMCID: PMC9307416 DOI: 10.1155/2022/4250531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Cholangiocarcinoma (CCA) is a hepatobiliary carcinoma characterized by the differentiation of bile duct cells, and the patients with CCA often have a poor prognosis. Eukaryotic translation initiation factor 5A (eIF5A) is reported to have multiple biological activities. Targeted activation of ferroptosis may be a therapeutic strategy for cancer. Nevertheless, the effects of eIF5A and ferroptosis on CCA are still elucidated. Our study explored the effects of eIF5A in CCA, and the mechanisms also are studied. In this paper, TCGA database analysis suggested that eIF5A was upregulated in CCA, and high expression of eIF5A might predict a poor prognosis. Moreover, FANCD2, SLC7A11, and HSPB1 were significantly overexpressed in CCA. The results indicated that eIF5A was overexpressed in CCA tissues and cells. Further experiments demonstrated that eIF5A silencing decreased CCA cell activity and enhanced ferroptosis and mitochondrial apoptosis. In addition, upregulation of eIF5A showed the opposite effect on CCA cells compared with downregulation of eIF5A. Finally, the silencing of eIF5A could restrain the growth of xenografted tumors and promote ferroptosis. Overall, eIF5A enlarged CCA cell activity and attenuated ferroptosis and mitochondrial apoptosis. The results suggested that assessment of eIF5A might provide help for the diagnosis and treatment of CCA.
Collapse
|
46
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Karapedi E, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Papavassiliou KA, Karamouzis MV, Papavassiliou AG. Immunotherapy as a Therapeutic Strategy for Gastrointestinal Cancer-Current Treatment Options and Future Perspectives. Int J Mol Sci 2022; 23:6664. [PMID: 35743107 PMCID: PMC9224428 DOI: 10.3390/ijms23126664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) cancer constitutes a highly lethal entity among malignancies in the last decades and is still a major challenge for cancer therapeutic options. Despite the current combinational treatment strategies, including chemotherapy, surgery, radiotherapy, and targeted therapies, the survival rates remain notably low for patients with advanced disease. A better knowledge of the molecular mechanisms that influence tumor progression and the development of optimal therapeutic strategies for GI malignancies are urgently needed. Currently, the development and the assessment of the efficacy of immunotherapeutic agents in GI cancer are in the spotlight of several clinical trials. Thus, several new modalities and combinational treatments with other anti-neoplastic agents have been identified and evaluated for their efficiency in cancer management, including immune checkpoint inhibitors, adoptive cell transfer, chimeric antigen receptor (CAR)-T cell therapy, cancer vaccines, and/or combinations thereof. Understanding the interrelation among the tumor microenvironment, cancer progression, and immune resistance is pivotal for the optimal therapeutic management of all gastrointestinal solid tumors. This review will shed light on the recent advances and future directions of immunotherapy for malignant tumors of the GI system.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
| | - Nikolaos Papadopoulos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Eleni Karapedi
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Christos Damaskos
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
| |
Collapse
|
47
|
Xing LH, Zhuo LY, Wang JN, Zhang Y, Zhu FY, Wang C, Yin XP, Gao BL. Values of MRI Imaging Presentations in the Hepatobiliary Phase, DWI and T2WI Sequences in Predicting Pathological Grades of Intrahepatic Mass-Forming Cholangiocarcinoma. Front Oncol 2022; 12:867702. [PMID: 35747789 PMCID: PMC9209728 DOI: 10.3389/fonc.2022.867702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Objective To retrospectively investigate the value of various MRI image menifestations in the hepatobiliary phase (HBP), DWI and T2WI sequences in predicting the pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC). Materials and Methods Forty-three patients of IMCCs confirmed by pathology were enrolled including 25 cases in well- or moderately-differentiated group and 18 cases in poorly-differentiated group. All patients underwent DWI, T2WI and HBP scan. The Chi square test was used to compare the differences in the general information. Logistic regression analysis was used to analyze the risk factors in predicting the pathological grade of IMCCs. Results The maximal diameter of the IMCC lesion was < 3 cm in 11 patients, between 3 cm and 6 cm in 15, and > 6 cm in 17. Sixteen cases had intrahepatic metastasis, including 5 in the well- or moderately-differentiated group and 11 in the poorly-differentiated group. Seventeen (39.5%) patients presented with target signs in the DWI sequence, including 9 in the well- or moderately-differentiated group and 8 in the poorly-differentiated group. Twenty (46.5%) patients presented with target signs in the T2WI sequence, including 8 in the well- or moderately-differentiated group and 12 in the poorly-differentiated group. Nineteen cases (54.3%) had a complete hypointense signal ring, including 13 in the well- or moderately-differentiated group and 6 in the poorly-differentiated group. Sixteen (45.7%) cases had an incomplete hypointense signal ring, including 5 in the well- or moderately-differentiated group and 11 in the poorly-differentiated group. The lesion size, intrahepatic metastasis, T2WI signal, and integrity of a hypointense signal ring in HBP were statistically significantly different between two gourps. T2WI signal, presence or non-presence of intrahepatic metastasis, and integrity of hypointense signal ring were the independent influencing factors for pathological grade of IMCC. Conclusion Target sign in T2WI sequence, presence of intrahepatic metastasis and an incomplete hypointense-signal ring in HBP are more likely to be present in poorly-differentiated IMCCs.
Collapse
Affiliation(s)
- Li-Hong Xing
- Affiliated Hospital of Hebei University/ School of Clinical Medicine of Hebei University, Baoding, China
| | - Li-Yong Zhuo
- Computed Tomography (CT)/Magnetic Resonance Imaging (MRI) Room, Affiliated Hospital of Hebei University, Baoding, China
| | - Jia-Ning Wang
- Computed Tomography (CT)/Magnetic Resonance Imaging (MRI) Room, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan Zhang
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Feng-Ying Zhu
- Computed Tomography (CT)/Magnetic Resonance Imaging (MRI) Room, Affiliated Hospital of Hebei University, Baoding, China
| | - Chu Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ping Yin
- Computed Tomography (CT)/Magnetic Resonance Imaging (MRI) Room, Affiliated Hospital of Hebei University, Baoding, China
- *Correspondence: Xiao-Ping Yin, ;
| | - Bu-Lang Gao
- Computed Tomography (CT)/Magnetic Resonance Imaging (MRI) Room, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
48
|
Nagao M, Fukuda A, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Masuda T, Araki O, Yoshikawa T, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Muta Y, Tsuda M, Maruno T, Nakanishi Y, Taketo MM, Ferrer J, Tsuruyama T, Nakanuma Y, Taura K, Uemoto S, Seno H. Concurrent Activation of Kras and Canonical Wnt Signaling Induces Premalignant Lesions That Progress to Extrahepatic Biliary Cancer in Mice. Cancer Res 2022; 82:1803-1817. [PMID: 35247892 DOI: 10.1158/0008-5472.can-21-2176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Biliary cancer has long been known to carry a poor prognosis, yet the molecular pathogenesis of carcinoma of the extrahepatic biliary system and its precursor lesions remains elusive. Here we investigated the role of Kras and canonical Wnt pathways in the tumorigenesis of the extrahepatic bile duct (EHBD) and gall bladder (GB). In mice, concurrent activation of Kras and Wnt pathways induced biliary neoplasms that resembled human intracholecystic papillary-tubular neoplasm (ICPN) and biliary intraepithelial neoplasia (BilIN), putative precursors to invasive biliary cancer. At a low frequency, these lesions progressed to adenocarcinoma in a xenograft model, establishing them as precancerous lesions. Global gene expression analysis revealed increased expression of genes associated with c-Myc and TGFβ pathways in mutant biliary spheroids. Silencing or pharmacologic inhibition of c-Myc suppressed proliferation of mutant biliary spheroids, whereas silencing of Smad4/Tgfbr2 or pharmacologic inhibition of TGFβ signaling increased proliferation of mutant biliary spheroids and cancer formation in vivo. Human ICPNs displayed activated Kras and Wnt signals and c-Myc and TGFβ pathways. Thus, these data provide direct evidence that concurrent activation of the Kras and canonical Wnt pathways results in formation of ICPN and BilIN, which could develop into biliary cancer. SIGNIFICANCE This work shows how dysregulation of canonical cell growth pathways drives precursors to biliary cancers and identifies several molecular vulnerabilities as potential therapeutic targets in these precursors to prevent oncogenic progression.
Collapse
Affiliation(s)
- Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuichi Fukunaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.,Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Osamu Araki
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takaaki Yoshikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Kenji Masuo
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yu Muta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Makoto Mark Taketo
- Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Kita-ku, Osaka, Japan.,iACT, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Spain.,Genetics and Genomics Section, Department of Metabolism, Digestion and Reproduction, National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, United Kingdom
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yasuni Nakanuma
- Department of Diagnostic Pathology, Fukui Prefecture Saiseikai Hospital, Fukui, Japan
| | - Kojiro Taura
- Division of Hepatobiliary Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepatobiliary Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
49
|
Puthdee N, Sriswasdi S, Pisitkun T, Ratanasirintrawoot S, Israsena N, Tangkijvanich P. The LIN28B/TGF-β/TGFBI feedback loop promotes cell migration and tumour initiation potential in cholangiocarcinoma. Cancer Gene Ther 2022; 29:445-455. [PMID: 34548635 PMCID: PMC9113936 DOI: 10.1038/s41417-021-00387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/25/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023]
Abstract
Cholangiocarcinoma (CCA), a lethal malignancy of the biliary epithelium, is the second most common primary liver cancer. The poor prognosis of CCA is due to the high rate of tumour invasion and distant metastasis. We found that the RNA-binding protein LIN28B, a known regulator of microRNA biogenesis, stem cell maintenance, and oncogenesis, is expressed in a subpopulation of CCA patients. To further investigate the potential role of LIN28B in CCA pathogenesis, we studied the effect of LIN28B overexpression in the cholangiocyte cell line MMNK-1 and cholangiocarcinoma cell lines HuCCT-1 and KKU-214. Here, we show that enhanced LIN28B expression promoted cancer stem cell-like properties in CCA, including enhanced cell migration, epithelial-to-mesenchymal transition (EMT), increased cell proliferation and spheroid formation. Proteomic analysis revealed TGF-β-induced protein (TGFBI) as a novel LIN28B target gene, and further analysis showed upregulation of other components of the TGF-β signalling pathway, including TGF-β receptor type I (TGFBRI) expression and cytokine TGFB-I, II and III secretion. Importantly, the small molecule TGF-β inhibitor SB431542 negated the effects of LIN28B on both cell migration and clonogenic potential. Overexpression of TGFBI alone promoted cholangiocarcinoma cell migration and EMT changes, but not spheroid formation, suggesting that TGFBI partially contributes to LIN28B-mediated aggressive cell behaviour. These observations are consistent with a model in which TGF-β and LIN28B work together to form a positive feedback loop during cholangiocarcinoma metastasis and provide a therapeutic intervention opportunity.
Collapse
Affiliation(s)
- Nattapong Puthdee
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Nipan Israsena
- Center of Excellence for Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
50
|
Trifylli EM, Koustas E, Papadopoulos N, Sarantis P, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Karamouzis MV. An Insight into the Novel Immunotherapy and Targeted Therapeutic Strategies for Hepatocellular Carcinoma and Cholangiocarcinoma. Life (Basel) 2022; 12:665. [PMID: 35629333 PMCID: PMC9146702 DOI: 10.3390/life12050665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) constitute highly malignant forms of primary liver cancers. Hepatocellular and bile duct carcinogenesis is a multiplex process, caused by various genetic and epigenetic alterations, the influence of environmental factors, as well as the implication of the gut microbiome, which was undervalued in the previous years. The molecular and immunological analysis of the above malignancies, as well as the identification of the crucial role of intestinal microbiota for hepatic and biliary pathogenesis, opened the horizon for novel therapeutic strategies, such as immunotherapy, and enhanced the overall survival of cancer patients. Some of the immunotherapy strategies that are either clinically applied or under pre-clinical studies include monoclonal antibodies, immune checkpoint blockade, cancer vaccines, as well as the utilization of oncolytic viral vectors and Chimeric antigen, receptor-engineered T (CAR-T) cell therapy. In this current review, we will shed light on the recent therapeutic modalities for the above primary liver cancers, as well as on the methods for the enhancement and optimization of anti-tumor immunity.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Evangelos Koustas
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Nikolaos Papadopoulos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
| | - Panagiotis Sarantis
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Georgios Aloizos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11572 Athens, Greece;
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Michalis V. Karamouzis
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| |
Collapse
|