1
|
Díaz-Cornejo S, Otero MC, Banerjee A, Gordillo-Fuenzalida F. Biological properties of exopolysaccharides produced by Bacillus spp. Microbiol Res 2023; 268:127276. [PMID: 36525789 DOI: 10.1016/j.micres.2022.127276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
There is currently a constant search for ecofriendly bioproducts, which could contribute to various biomedical applications. Among bioproducts, exopolysaccharides are prominent contemporary extracellular biopolymers that are produced by a great variety of bacterial species. These homo- or heteropolymers are composed of monomeric sugar units linked by glycosidic bonds, which are secreted to the external medium. Bacillus spp. are reported to be present in different ecosystems and produce exopolysaccharides with different biological properties such as antioxidant, antibacterial, antiviral anti-inflammatory, among others. Since a great diversity of bacterial strains are able to produce exopolysaccharides, a great variation in the molecular composition is observed, which is indeed present in some of the chemical structures predicted until date. These molecular characteristics and their relations with different biological functions are discussed in order to visualize future applications in biomedical section.
Collapse
Affiliation(s)
- Sofía Díaz-Cornejo
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel, 3605 Talca, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago, Chile
| | - Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3466706, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel, 3605 Talca, Chile.
| |
Collapse
|
2
|
Antioxidant Activities of an Exopolysaccharide (DeinoPol) Produced by the Extreme Radiation-Resistant Bacterium Deinococcus radiodurans. Sci Rep 2020; 10:55. [PMID: 31919371 PMCID: PMC6952347 DOI: 10.1038/s41598-019-56141-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023] Open
Abstract
Deinococcus radiodurans shows extreme resistance to a range of remarkable environmental stresses. Deinococcal exopolysaccharide (DeinoPol) is a component of the cell wall, but its role in stress resistance has not yet been well-described. In this study, we isolated and characterized DeinoPol from Deinococcus radiodurans R1 strain and investigated its application as an antioxidant agent. Bioinformatic analysis indicated that dra0033, encoding an ExoP-like protein, was involved in DeinoPol biosynthesis, and dra0033 mutation significantly decreased survival rates in response to stresses. Purified DeinoPol consists of different monosaccharides and has a molecular weight of approximately 80 to 100 kDa. DeinoPol also demonstrates highly protective effects on human keratinocytes in response to stress-induced apoptosis by effectively scavenging ROS. Taken together, these findings indicate that DeinoPol is the first reported deinococcal exopolysaccharide that might be used in cosmetics and pharmaceuticals as a safe and attractive radical scavenger.
Collapse
|
3
|
Cheng X, Huang L, Li KT. Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis. World J Microbiol Biotechnol 2019; 35:68. [PMID: 31011829 DOI: 10.1007/s11274-019-2645-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The effects of different carbon sources on the antioxidant activity changes of exopolysaccharides (EPSs) were determined for the strains Lactobacillus plantarum LPC-1 with glucose, sucrose and its mixture as carbon sources, respectively. Meanwhile, GC-MS datasets coupled with multivariate statistical methods were used to investigate metabolic changes of EPSs-producing L. plantarum cultured with different carbon source. Among carbon sources examined, both of glucose and sucrose were favorable for the cell growth, while the maximum EPSs yield was achieved when sucrose was employed. EPSs cultured with different carbon sources showed remarkable different antioxidant activities, and EPSs with sucrose or mixed sugar as carbon source exhibited a promising antioxidant activity, such as hydroxyl scavenging activity and DPPH radical scavenging activity. Results from rice cultivation showed a similar conclusion that there were also significant differences in the antioxidant activities of EPSs obtained from different carbon sources in inducing rice resistance to chromium stress, but addition of EPSs had no significant impact on the uptake of Cr metals. Principal component analysis showed clear differences in metabolites among different treatment, and the glycolysis and tricarboxylic acid cycle were decreased when sucrose or mixed sugar was used as carbon source, and the production of lactic acid was also reduced, which might be the main reasons for the overproduction of EPSs. Our results indicated that Lactobacillus strain, depending on the carbon source in the medium, could produce EPSs of different biological properties, and the metabolomic analysis findings provided the first omics view of cell growth and EPSs synthesis in L. plantarum, which would be a theoretical basis for further improving the production of EPSs.
Collapse
Affiliation(s)
- Xin Cheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin Huang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Kun-Tai Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Ye Y, Sun-Waterhouse D, You L, Abbasi AM. Harnessing food-based bioactive compounds to reduce the effects of ultraviolet radiation: a review exploring the link between food and human health. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yuhui Ye
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lijun You
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Arshad Mehmood Abbasi
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Department of Environmental Sciences; COMSATS Institute of Information Technology (CIIT); Park Road ChakShahzad Islamabad 22060 Pakistan
| |
Collapse
|
5
|
Lee NR, Lee SM, Cho KS, Jeong SY, Hwang DY, Kim DS, Hong CO, Son HJ. Improved Production of Poly-γ-Glutamic Acid by Bacillus subtilis D7 Isolated from Doenjang, a Korean Traditional Fermented Food, and Its Antioxidant Activity. Appl Biochem Biotechnol 2014; 173:918-32. [DOI: 10.1007/s12010-014-0908-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
|
6
|
Diao Y, Xin Y, Zhou Y, Li N, Pan X, Qi S, Qi Z, Xu Y, Luo L, Wan H, Lan L, Yin Z. Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-κB and MAPKs activation and ROS production. Int Immunopharmacol 2013; 18:12-9. [PMID: 24201081 DOI: 10.1016/j.intimp.2013.10.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 11/28/2022]
Abstract
Extracellular polysaccharides (EPSs) are high-molecular weight sugar-based polymers that are synthesized and secreted by many microorganisms. Recently, EPSs have attracted particular attention due to their multiple biological functions including anti-inflammation. However, studies rarely reported the molecular mechanisms underlying their functions. We previously purified an EPS from an oligotrophic bacteria (Bacillus sp. LBP32) found in Lop Nur Desert, which possesses a potent antioxidant activity, while the anti-inflammatory effects of EPS and signaling mechanisms underlying its action have not been clarified. In this study, we demonstrated that EPS significantly inhibited the LPS-induced release of pro-inflammatory mediators, such as nitric oxide (NO), IL-6 and TNF-α, without any significant cytotoxicity. EPS also downregulated the expression of nitric oxide synthase (iNOS) induced by LPS. Furthermore, activation of nuclear factor κB (NF-κB) was abrogated by EPS through inhibited the phosphorylation of IκB kinase (IKK). Activations of Mitogen-activated protein kinases (MAPKs), including p38 MAPK and c-Jun N-terminal kinase (JNK), were also found to be inhibited by EPS. In addition, the level of intracellular reactive oxygen species (ROS) was also significantly decreased with the treatment of EPS. In vivo experiments were conducted and showed that EPS could greatly improve the outcome of mice with LPS-induced endotoxic shock. Taken together, our data indicate that EPS prevents LPS-induced inflammatory response by inhibiting NF-κB and MAPKs activation and ROS production.
Collapse
Affiliation(s)
- Ying Diao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Yinqiang Xin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Yi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Na Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Xiaolong Pan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Shimei Qi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Zhilin Qi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Yimiao Xu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China; Collaborative Innovation Center of Biomedicine for Public Hygiene Emergency and Critical Care, Jiangsu Life Sciences & Technology Innovation Park, Nanjing, Jiangsu, PR China
| | - Honggui Wan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210-009, PR China; Collaborative Innovation Center of Biomedicine for Public Hygiene Emergency and Critical Care, Jiangsu Life Sciences & Technology Innovation Park, Nanjing, Jiangsu, PR China.
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China; Collaborative Innovation Center of Biomedicine for Public Hygiene Emergency and Critical Care, Jiangsu Life Sciences & Technology Innovation Park, Nanjing, Jiangsu, PR China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China; Collaborative Innovation Center of Biomedicine for Public Hygiene Emergency and Critical Care, Jiangsu Life Sciences & Technology Innovation Park, Nanjing, Jiangsu, PR China.
| |
Collapse
|