1
|
|
2
|
Somma V, Calvio C, Rabuffetti M, Rama E, Speranza G, Morelli CF. An overall framework for the E. coli γ-glutamyltransferase-catalyzed transpeptidation reactions. Bioorg Chem 2021; 115:105217. [PMID: 34364051 DOI: 10.1016/j.bioorg.2021.105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
γ-Glutamyl derivatives of proteinogenic or modified amino acids raise considerable interest as flavor enhancers or biologically active compounds. However, their supply, on a large scale and at reasonable costs, remains challenging. Enzymatic synthesis has been recognized as a possible affordable alternative with respect to both isolation procedures from natural sources, burdened by low-yield and by the requirement of massive amount of starting material, and chemical synthesis, inconvenient because of the need of protection/deprotection steps. The E. coli γ-glutamyltransferase (Ec-GGT) has already been proposed as a biocatalyst for the synthesis of various γ-glutamyl derivatives. However, enzymatic syntheses using this enzyme usually provide the desired products in limited yield. Hydrolysis and autotranspeptidation of the donor substrate have been identified as the side reactions affecting the final yield of the catalytic process. In addition, experimental conditions need to be specifically adjusted for each acceptor substrate. Substrate specificity and the fine characterization of the activities exerted by the enzyme over time has so far escaped rationalization. In this work, reactions catalyzed by Ec-GGT between the γ-glutamyl donor glutamine and several representative acceptor amino acids have been finely analyzed with the identification of single reaction products over time. This approach allowed to rationalize the effect of donor/acceptor molar ratio on the outcome of the transpeptidation reaction and on the distribution of the different byproducts, inferring a general scheme for Ec-GGT-catalyzed reactions. The propensity to react of the different acceptor substrates is in agreement with recent findings obtained using model substrates and further supported by x-ray crystallography and will contribute to characterize the still elusive acceptor binding site of the enzyme.
Collapse
Affiliation(s)
- Valeria Somma
- Department of Chemistry, Università degli Studi di Milano, via Golgi, 19, 20133 Milano, Italy.
| | - Cinzia Calvio
- Department of Biology and Biotechnology, Università degli Studi di Pavia, via Ferrata, 9, 27100 Pavia, Italy.
| | - Marco Rabuffetti
- Department of Chemistry, Università degli Studi di Milano, via Golgi, 19, 20133 Milano, Italy.
| | - Erlinda Rama
- Department of Biology and Biotechnology, Università degli Studi di Pavia, via Ferrata, 9, 27100 Pavia, Italy.
| | - Giovanna Speranza
- Department of Chemistry, Università degli Studi di Milano, via Golgi, 19, 20133 Milano, Italy.
| | - Carlo F Morelli
- Department of Chemistry, Università degli Studi di Milano, via Golgi, 19, 20133 Milano, Italy.
| |
Collapse
|
3
|
Saini M, Kashyap A, Bindal S, Saini K, Gupta R. Bacterial Gamma-Glutamyl Transpeptidase, an Emerging Biocatalyst: Insights Into Structure-Function Relationship and Its Biotechnological Applications. Front Microbiol 2021; 12:641251. [PMID: 33897647 PMCID: PMC8062742 DOI: 10.3389/fmicb.2021.641251] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) enzyme is ubiquitously present in all life forms and plays a variety of roles in diverse organisms. Higher eukaryotes mainly utilize GGT for glutathione degradation, and mammalian GGTs have implications in many physiological disorders also. GGTs from unicellular prokaryotes serve different physiological functions in Gram-positive and Gram-negative bacteria. In the present review, the physiological significance of bacterial GGTs has been discussed categorizing GGTs from Gram-negative bacteria like Escherichia coli as glutathione degraders and from pathogenic species like Helicobacter pylori as virulence factors. Gram-positive bacilli, however, are considered separately as poly-γ-glutamic acid (PGA) degraders. The structure-function relationship of the GGT is also discussed mainly focusing on the crystallization of bacterial GGTs along with functional characterization of conserved regions by site-directed mutagenesis that unravels molecular aspects of autoprocessing and catalysis. Only a few crystal structures have been deciphered so far. Further, different reports on heterologous expression of bacterial GGTs in E. coli and Bacillus subtilis as hosts have been presented in a table pointing toward the lack of fermentation studies for large-scale production. Physicochemical properties of bacterial GGTs have also been described, followed by a detailed discussion on various applications of bacterial GGTs in different biotechnological sectors. This review emphasizes the potential of bacterial GGTs as an industrial biocatalyst relevant to the current switch toward green chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
4
|
Chen Z, Wang Z, Yuan H, He N. From Tea Leaves to Factories: A Review of Research Progress in l-Theanine Biosynthesis and Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1187-1196. [PMID: 33475342 DOI: 10.1021/acs.jafc.0c06694] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
l-Theanine is the most popular nonprotein amino acid contained in tea leaves. It is one of the umami components of green tea, contributing to the unique flavor of tea. Because of its various health functions, l-theanine has been commercially developed as a valuable ingredient easily used for various applications in food and pharmaceutical industries. Nowadays, l-theanine is mass-produced by plant extraction, chemical synthesis, or enzymatic transformation in factories. This review embodies the available up to date information on the l-theanine synthesis metabolism in the tea plant as well as approaches to produce it, placing emphasis on the biotransformation of l-theanine. It also gives insight into the challenges of l-theanine production on a large scale, as well as directions for future research. This review comprehensively summarizes information on l-theanine to provide an approach for an in-depth study of l-theanine production.
Collapse
Affiliation(s)
- Zhen Chen
- Henan Key Laboratory of Tea Plant Biology, College of Life Science, Xinyang Normal University, Xinyang 464000, China
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Wang
- TBI, Institut National des Sciences Appliquées Toulouse, Université de Toulouse, Toulouse 31013, France
| | - Hongyu Yuan
- Henan Key Laboratory of Tea Plant Biology, College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Massone M, Calvio C, Rabuffetti M, Speranza G, Morelli CF. Effect of the inserted active-site-covering lid loop on the catalytic activity of a mutant B. subtilis γ-glutamyltransferase (GGT). RSC Adv 2019; 9:34699-34709. [PMID: 35530678 PMCID: PMC9073855 DOI: 10.1039/c9ra05941e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/11/2019] [Indexed: 11/24/2022] Open
Abstract
γ-Glutamylpeptides are compounds derived from the acylation of an amino acid or a short peptide by the γ-carboxyl carbon of the side chain of glutamic acid. Due to their altered chemico-physical and organoleptic properties, they may be interesting substitutes or precursors of parent compounds used in pharmaceutical, dietetic and cosmetic formulations. Some of them are naturally occurring flavor enhancers or are endowed with biological activities. Enzymatic approaches to the synthesis of γ-glutamyl derivatives based on the use of γ-glutamyltransferases (GGTs, EC 2.3.2.2) have been proposed, which should be able to alleviate the problems connected with the troublesome and low-yielding extraction from natural sources or the non-economical chemical synthesis, which requires protection/deprotection steps. With the aim of overcoming the current limitations in the use of GGTs as biocatalysts, a mutant GGT was investigated. The mutant GGT was obtained by inserting the active-site-covering lid loop of the E. coli GGT onto the structure of B. subtilis GGT. With respect to the wild-type enzyme, the mutant showed a more demanding substrate specificity and a low hydrolase activity. These results represent an attempt to correlate the structural features of a GGT to its different activities. However, the ability of the mutant enzyme to catalyze the subsequent addition of several γ-glutamyl units, inherited by the parent B. subtilis GGT, still represents a limitation to its full application as a biocatalyst for preparative purposes. A mutant γ-glutamyltransferase with improve transpeptidase activity was obtained by inserting the active site-covering lid loop on an enzyme naturally lacking it.![]()
Collapse
Affiliation(s)
- Michela Massone
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology
- Università degli Studi di Pavia
- 27100 Pavia
- Italy
| | - Marco Rabuffetti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Giovanna Speranza
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
- Istituto di Scienze e Tecnologie Molecolari (INSTM)
| | - Carlo F. Morelli
- Department of Chemistry
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
6
|
Lee YC, Chi MC, Lin MG, Chen YY, Lin LL, Wang TF. Biocatalytic Synthesis of γ-glutamyl-L-leucine, a Kokumi-Imparting Dipeptide, byBacillus licheniformisγ-Glutamyltranspeptidase. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1444636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yen-Chung Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Min-Guan Lin
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Yi-Yu Chen
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Tzu-Fan Wang
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
7
|
Pesci L, Kara S, Liese A. Evaluation of the Substrate Scope of Benzoic Acid (De)carboxylases According to Chemical and Biochemical Parameters. Chembiochem 2016; 17:1845-1850. [PMID: 27505856 DOI: 10.1002/cbic.201600333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/06/2022]
Abstract
The enzymatic carboxylation of phenolic compounds has been attracting increasing interest in recent years, owing to its regioselectivity and technical potential as a biocatalytic equivalent for the Kolbe-Schmitt reaction. Mechanistically the reaction was demonstrated to occur through electrophilic aromatic substitution/water elimination with bicarbonate as a cosubstrate. The effects of the substituents on the phenolic ring have not yet been elucidated in detail, but this would give detailed insight into the substrate-activity relationship and would provide predictability for the acceptance of future substrates. In this report we show how the kinetic and (apparent) thermodynamic behavior can be explained through the evaluation of linear free energy relationships based on electronic, steric, and geometric parameters and through the consideration of enzyme-ligand interactions. Moreover, the similarity between the benzoic acid decarboxylases and the amidohydrolases superfamily is investigated, and promiscuous hydrolytic activity of the decarboxylase in the context of the hydrolysis of an activated ester bond has been established.
Collapse
Affiliation(s)
- Lorenzo Pesci
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, 21073, Hamburg, Germany
| | - Selin Kara
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, 21073, Hamburg, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, 21073, Hamburg, Germany.
| |
Collapse
|
8
|
Fluorine-containing benzothiazole as a novel trypanocidal agent: design, in silico study, synthesis and activity evaluation. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1475-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Immobilization of aminoacylase on electrospun nanofibrous membrane for the resolution of dl-theanine. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Bindal S, Gupta R. L-theanine synthesis using γ-glutamyl transpeptidase from Bacillus licheniformis ER-15. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9151-9. [PMID: 25196803 DOI: 10.1021/jf5022913] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recombinant γ-glutamyl transpeptidase (rBLGGT) from Bacillus licheniformis ER-15 was purified to homogeneity by ion-exchange chromatography. Molecular masses of large and small subunits were 42 and 22 kDa, respectively. The enzyme was optimally active at pH 9.0 and 60 °C and was alkali stable. K(m) and V(max) for γ-glutamyl-p-nitroanilide hydrochloride were 45 μM and 0.34 mM/min, respectively. L-Theanine synthesis was standardized using a one variable at a time approach followed by response surface methodology, which resulted in approximately 85-87% conversion of L-glutamine to L-theanine within 4 h. The standardized reaction contained 80 mM L-glutamine, 600 mM ethylamine, and 1.0 U/mL rBLGGTin 50 mM Tris-Cl (pH 9.0) at 37 °C. Similar conversions were also obtained with the enzyme immobilized in calcium alginate. Using immobilized enzyme, 35.2 g of L-theanine was obtained in three cycles of 1 L each. The product was purified by Dowex 50W X 8 hydrogen form resin and was confirmed by HPLC and proton NMR spectroscopy.
Collapse
Affiliation(s)
- Shruti Bindal
- Department of Microbiology, University of Delhi , South Campus, New Delhi 110021, India
| | | |
Collapse
|