1
|
He YL, Lin L, Zheng H, Mo Y, Zhou C, Sun S, Hong P, Qian ZJ. Potential anti-skin aging effect of a peptide AYAPE isolated from Isochrysis zhanjiangensis on UVB-induced HaCaT cells and H 2O 2-induced BJ cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112481. [PMID: 35660310 DOI: 10.1016/j.jphotobiol.2022.112481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
AYAPE (Ala-Tyr-Ala-Pro-Glu) is a pentapeptide isolated from Isochrysis zhanjiangensis, previous studies have proved that this pentapeptide has antioxidant and inflammatory activities. In this study, we determined the anti-skin aging bioactivity of AYAPE with UVB-induced human immortalized keratinocytes (HaCaT) and H2O2-induced human skin fibroblasts (BJ cells) as models. The results showed that AYAPE against UVB-induced photoaging on HaCaT cells via alleviating DNA damage, reducing intracellular reactive oxygen (ROS) levels, down regulating phosphorylation of proteins in MAPK/AP-1 signaling pathways. In addition, AYAPE attenuated senescence related effectors expression in H2O2-induced BJ cells. Furthermore, p53 showed an important role in regulation effect of AYAPE in both two cells, and AYAPE showed a directly combination with p53 by molecular docking. These results demonstrated that AYAPE is potential to against skin aging by decreasing matrix metalloproteinase-1 (MMP-1) production, inhibiting inflammation and apoptosis, and attenuating fibroblast senescence.
Collapse
Affiliation(s)
- Yuan-Lin He
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Liyuan Lin
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Haiyan Zheng
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Yinhuan Mo
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Shengli Sun
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China.
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524-088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China.
| |
Collapse
|
2
|
Ellison CR, Overa S, Boldor D. Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer. ULTRASONICS SONOCHEMISTRY 2019; 51:496-503. [PMID: 29793838 DOI: 10.1016/j.ultsonch.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Lipids extracted from algal biomass could provide an abundant, rapidly growing, high yield feedstock for bio-diesel and other green fuels to supplement current fossil-based sources. Ultrasound pretreatment is a mechanical cell disruption method that has been shown to enhance lipid recovery from algae due to cavitation effects that disrupt algae cell walls. In this study, a locally grown mixture of Chlorella vulgaris/Cyanobacteria leptolyngbya was sonicated in an ultrasonic reactor with a clamp-on transducer prior to solvent lipid extraction. This configuration allows for a non-contact delivery method of ultrasonic energy with improved operational advantages (no fouling of transducer, continuous operation, and fully scalable design). A central composite design (CCD) was implemented to statistically analyze and evaluate the effect of ultrasonic power (350-750 W) and treatment time (5-30 min) on lipid yield. Lipid recovery was found to increase with both ultrasonic power and treatment time. Total lipid yields (on dry biomass basis) extracted via the Bligh and Dyer method from Chlorella vulgaris/cyanobacteria co-culture ranged from 8.3% for untreated algae to 16.9% for algae sonicated with 750 W power for 30 min, which corresponds to more than a doubling of lipid recovery due to ultrasound pretreatment. Increased power and treatment times were found to increase the degree of cell disruption as observed in the SEM and TEM images after ultrasonic pretreatment. Additionally, hexane (1:1 v/v) was evaluated as an alternative to the standard Bligh & Dyer (2:2:1.8 v/v/v chloroform/methanol/cell suspension) lipid extraction solvent system. On average, the Bligh and Dyer method extracted on average over twice the amount of lipids compared to hexane extraction. The lipid profile of the algae extracts indicates high concentrations of lauric acid (12:0), palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). This particular configuration of an ultrasonic system proved to be a viable method for the pretreatment of algae for enhanced lipid yields. Future research should focus on identifying alternative extraction solvents and expanding the range of treatment conditions to optimize the ultrasonic power and treatment times for maximum lipid recovery.
Collapse
Affiliation(s)
- Candice R Ellison
- Louisiana State University Agricultural Center, Department of Biological and Agricultural Engineering, 149 EB Doran Bldg., LSU AgCenter, Baton Rouge, LA 70803, United States
| | - Sean Overa
- University of South Carolina, Department of Chemical Engineering, 103 Main Street, Columbia, SC 29208, United States
| | - Dorin Boldor
- Louisiana State University Agricultural Center, Department of Biological and Agricultural Engineering, 149 EB Doran Bldg., LSU AgCenter, Baton Rouge, LA 70803, United States.
| |
Collapse
|
3
|
Lee JH, Kim DS, Yang JH, Chun Y, Yoo HY, Han SO, Lee J, Park C, Kim SW. Enhanced electron transfer mediator based on biochar from microalgal sludge for application to bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 264:387-390. [PMID: 30041774 DOI: 10.1016/j.biortech.2018.06.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 05/28/2023]
Abstract
This study is focused on the utilization of waste microalgal sludge (MS) from microalgal extraction and its potential as an electrode material. The MS was activated under N2 at high temperature for conversion to biochar (MSB). In addition, cobalt (Co; metal hydroxide) and chitosan were used as a mediator for electron transfer by immobilization on MSB (MSB/Co/chitosan). Through analysis of the surface and components of the MSB/Co/chitosan, it was shown that Co and chitosan were properly synthesized with MSB. The enzymatic fuel cell (EFC) system successfully obtained a power density of 3.1 mW cm-2 and a current density of 9.7 mA cm-2. In addition, the glucose biosensors applied with the developed electron transfer mediator showed a sensitivity of 0.488 mA mM-1 cm-2.
Collapse
Affiliation(s)
- Ja Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Dong Sup Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Ji Hyun Yang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Youngsang Chun
- Department of Interdisciplinary Bio-Micro System Technology, College of Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | - Jinyoung Lee
- Department of Plant and Food Sciences, Sangmyung University, 31 Sangmyungdae-Gil, Dongnam-Gu, Cheonan, Chungnam 31066, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 139-701, Republic of Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|