1
|
Ma X, Li S, Tong X, Liu K. An overview on the current status and future prospects in Aspergillus cellulase production. ENVIRONMENTAL RESEARCH 2024; 244:117866. [PMID: 38061590 DOI: 10.1016/j.envres.2023.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Cellulase is a new research point besides glucoamylase, amylase, and protease in the enzyme industry. Cellulase can decompose lignocellulosic biomass into small-molecule sugars, which facilitates microbial utilization; thus, it has a vast market potential in the field of feed, food, energy, and chemistry. The Aspergillus was the first strain used in cellulase preparation because of its safety and non-toxicity, strong growth ability, and high enzyme yield. This review provides the latest research and advances on preparing cellulase from Aspergillus. The metabolic mechanisms of cellulase secretion by Aspergillus, the selection of fermentation substrates, the comparison of the fermentation modes, and the effect of fermentation conditions have been discussed in this review. Also, the subsequent separation and purification techniques of Aspergillus cellulase, including salting out, organic solvent precipitation, ultrafiltration, and chromatography, have been declared. Further, bottlenecks in Aspergillus cellulase preparation and corresponding feasible approaches, such as genetic engineering, mixed culture, and cellulase immobilization, have also been proposed in this review. This paper provides theoretical support for the efficient production and application of Aspergillus cellulase.
Collapse
Affiliation(s)
- Xiaoyu Ma
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Shengpin Li
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Xiaoxia Tong
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Kun Liu
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China.
| |
Collapse
|
2
|
Korsa G, Konwarh R, Masi C, Ayele A, Haile S. Microbial cellulase production and its potential application for textile industries. ANN MICROBIOL 2023; 73:13. [DOI: 10.1186/s13213-023-01715-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 09/03/2023] Open
Abstract
Abstract
Purpose
The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly confined to the realm of research.
Methods
This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, and its prospective application for textile industries was appraised and produced to develop this assessment. Articles were divided into two categories based on the results of trustworthy educational journals: methods used to produce the diversity of microorganisms through fermentation processes and such approaches used to produce the diversity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile industry.
Results
Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and accelerated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications.
Conclusion
Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhancement and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long and healthy lifestyle.
Collapse
|
3
|
Jeung K, Kim S, Yeon Lee J, Yeol Jung G. Optimization of mevalonate production using acetate by precursor balancing and flux redistribution in Escherichia coli. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Kim S, Lee HK, Jung GY. Identification Process and Physiological Properties of Transporters of Carboxylic Acids in Escherichia coli. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Kovács E, Szűcs C, Farkas A, Szuhaj M, Maróti G, Bagi Z, Rákhely G, Kovács KL. Pretreatment of lignocellulosic biogas substrates by filamentous fungi. J Biotechnol 2022; 360:160-170. [PMID: 36273669 DOI: 10.1016/j.jbiotec.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Decomposition of lignocellulosic plant biomass by four filamentous fungi was carried out to facilitate subsequent anaerobic degradation and biogas formation. Agricultural side products, wheat straw and corn stover and forestry energy plant willow chips were selected as plant biomass sources. The substrates were confronted by pure cultures of Penicillium aurantiogriseum (new isolate from rumen), Trichoderma reesei (DSM768), Gilbertella persicaria (SZMC11086) and Rhizomucor miehei (SZMC11005). In addition to total cellulolytic filter paper degradation activity, the production of endoglucanase, cellobiohydrolase, β-glucosidase enzymes were followed during the pretreatment period, which lasted for 10 days at 37 °C. The products of pretreatments were subsequently tested for mesophilic biogas production in batch reactors. All 4 strains effectively pretreated the lignocellulosic substrates albeit in varying degrees, which was related to the level of the tested hydrolytic enzyme activities. Penicillium aurantiogriseum showed outstanding hydrolytic enzyme production and highest biogas yield from the partially degraded substrates. Corn stover was the best substrate for biomass decomposition and biogas production. Scanning electron microscopy confirmed the deep penetration of fungal hyphae into the lignocellulosic substrate in all cases.
Collapse
Affiliation(s)
- Etelka Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Csilla Szűcs
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary; Department of Oral Biology and Experimental Dentistry, University of Szeged, Szeged, Hungary.
| |
Collapse
|
6
|
Woo S, Moon JH, Sung J, Baek D, Shon YJ, Jung GY. Recent Advances in the Utilization of Brown Macroalgae as Feedstock for Microbial Biorefinery. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Acetate-rich Cellulosic Hydrolysates and Their Bioconversion Using Yeasts. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Lee S, Jung YJ, Park SJ, Ryu MH, Kim JE, Song HM, Kang KH, Song BK, Sung BH, Kim YH, Kim HT, Joo JC. Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester. BIORESOURCE TECHNOLOGY 2022; 352:127106. [PMID: 35378283 DOI: 10.1016/j.biortech.2022.127106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignin valorization depends on microbial upcycling of various aromatic compounds in the form of a complex mixture, including p-coumaric acid and ferulic acid. In this study, an engineered Pseudomonas putida strain utilizing lignin-derived monomeric compounds via biological funneling was developed to produce 2-pyrone-4,6-dicarboxylic acid (PDC), which has been considered a promising building block for bioplastics. The biosynthetic pathway for PDC production was established by introducing the heterologous ligABC genes under the promoter Ptac in a strain lacking pcaGH genes to accumulate a precursor of PDC, i.e., protocatechuic acid. Based on the culture optimization, fed-batch fermentation of the final strain resulted in 22.7 g/L PDC with a molar yield of 1.0 mol/mol and productivity of 0.21 g/L/h. Subsequent purification of PDC at high purity was successfully implemented, which was consequently applied for the novel polyester.
Collapse
Affiliation(s)
- Siseon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ye Jean Jung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Mi-Hee Ryu
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Joo Eon Kim
- Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyoung Hee Kang
- Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Bong Keun Song
- Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yong Hwan Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Research Center for Bio-based Chemicals, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|