1
|
Ravikrishnan A, Wijaya I, Png E, Chng KR, Ho EXP, Ng AHQ, Mohamed Naim AN, Gounot JS, Guan SP, Hanqing JL, Guan L, Li C, Koh JY, de Sessions PF, Koh WP, Feng L, Ng TP, Larbi A, Maier AB, Kennedy BK, Nagarajan N. Gut metagenomes of Asian octogenarians reveal metabolic potential expansion and distinct microbial species associated with aging phenotypes. Nat Commun 2024; 15:7751. [PMID: 39237540 PMCID: PMC11377447 DOI: 10.1038/s41467-024-52097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
While rapid demographic changes in Asia are driving the incidence of chronic aging-related diseases, the limited availability of high-quality in vivo data hampers our ability to understand complex multi-factorial contributions, including gut microbial, to healthy aging. Leveraging a well-phenotyped cohort of community-living octogenarians in Singapore, we used deep shotgun-metagenomic sequencing for high-resolution taxonomic and functional characterization of their gut microbiomes (n = 234). Joint species-level analysis with other Asian cohorts identified distinct age-associated shifts characterized by reduction in microbial richness, and specific Alistipes and Bacteroides species enrichment (e.g., Alistipes shahii and Bacteroides xylanisolvens). Functional analysis confirmed these changes correspond to metabolic potential expansion in aging towards alternate pathways synthesizing and utilizing amino-acid precursors, vis-à-vis dominant microbial guilds producing butyrate in gut from pyruvate (e.g., Faecalibacterium prausnitzii, Roseburia inulinivorans). Extending these observations to key clinical markers helped identify >10 robust microbial associations to inflammation, cardiometabolic and liver health, including potential probiotic species (e.g., Parabacteroides goldsteinii) and pathobionts (e.g., Klebsiella pneumoniae), highlighting the microbiome's role as biomarkers and potential targets for promoting healthy aging.
Collapse
Affiliation(s)
- Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Indrik Wijaya
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eileen Png
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Kern Rei Chng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Eliza Xin Pei Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Amanda Hui Qi Ng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Ahmad Nazri Mohamed Naim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jean-Sebastien Gounot
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Shou Ping Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jasinda Lee Hanqing
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Lihuan Guan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Chenhao Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Jia Yu Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Paola Florez de Sessions
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Woon-Puay Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Brenner Centre for Molecular Medicine, Singapore, 117609, Republic of Singapore
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Tze Pin Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Anis Larbi
- Singapore Immunology Network (SigN), Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Andrea B Maier
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
2
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
3
|
Lauer AA, Grimm HS, Apel B, Golobrodska N, Kruse L, Ratanski E, Schulten N, Schwarze L, Slawik T, Sperlich S, Vohla A, Grimm MOW. Mechanistic Link between Vitamin B12 and Alzheimer's Disease. Biomolecules 2022; 12:129. [PMID: 35053277 PMCID: PMC8774227 DOI: 10.3390/biom12010129] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly population, affecting over 55 million people worldwide. Histopathological hallmarks of this multifactorial disease are an increased plaque burden and tangles in the brains of affected individuals. Several lines of evidence indicate that B12 hypovitaminosis is linked to AD. In this review, the biochemical pathways involved in AD that are affected by vitamin B12, focusing on APP processing, Aβ fibrillization, Aβ-induced oxidative damage as well as tau hyperphosphorylation and tau aggregation, are summarized. Besides the mechanistic link, an overview of clinical studies utilizing vitamin B supplementation are given, and a potential link between diseases and medication resulting in a reduced vitamin B12 level and AD are discussed. Besides the disease-mediated B12 hypovitaminosis, the reduction in vitamin B12 levels caused by an increasing change in dietary preferences has been gaining in relevance. In particular, vegetarian and vegan diets are associated with vitamin B12 deficiency, and therefore might have potential implications for AD. In conclusion, our review emphasizes the important role of vitamin B12 in AD, which is particularly important, as even in industrialized countries a large proportion of the population might not be sufficiently supplied with vitamin B12.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Birgit Apel
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Nataliya Golobrodska
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Lara Kruse
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Elina Ratanski
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Noemi Schulten
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Laura Schwarze
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Thomas Slawik
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Saskia Sperlich
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Antonia Vohla
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
4
|
The Relation between Eating Habits and Abdominal Fat, Anthropometry, PON1 and IL-6 Levels in Patients with Multiple Sclerosis. Nutrients 2020; 12:nu12030744. [PMID: 32168955 PMCID: PMC7146613 DOI: 10.3390/nu12030744] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic neurodegenerative disease of an inflammatory, demyelinating and autoimmune nature. Diets with a high caloric density could be especially relevant in terms of the pathogenesis related to an increase in adipose tissue that is metabolically active and releases mediators, which can induce systemic inflammation and an increased oxidation state. The aim of this study was to analyse the eating habits related to calorie intake and their impact on abdominal obesity associated with anthropometric variables, the activity of the oxidation marker paraoxonase 1 (PON1), and interleukin 6 (IL-6) levelsin MS patients. METHODS An analytical and quantitative observational study was conducted with a population of 57 MS patients. The dietary-nutritional anamnesis was gained through the Food Frequency Questionnaire and a food diary. Diet and eating habits have been analysed through the Easy Diet-Programa de gestión de la consulta® software. Anthropometric measurements were taken in order to determine the presence of abdominal obesity. In addition, PON1 was quantified in serum by means of automated spectrophotometric assays and IL-6 was quantified using the ELISA technique. RESULTS A normal calorie intake was determined for women, yet a slightly lower intake was observed in men. Carbohydrate consumption was below what was established, and protein and lipids were over, in both cases. Furthermore, most patients had abdominal obesity, with significantly higher body mass index (BMI), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), fat percentage and IL-6 levels. IL-6 is greatly correlated with waist circumference and WHtR. CONCLUSION MS patients' nutrient intake shows an imbalance between macronutrients. This seems to favour the abdominal obesity associated with high values of proinflammatory IL-6 that is not correlated with a lower activity of PON1.
Collapse
|
5
|
Chong L, Tian R, Shi R, Ouyang Z, Xia Y. Coupling the Paternò-Büchi (PB) Reaction With Mass Spectrometry to Study Unsaturated Fatty Acids in Mouse Model of Multiple Sclerosis. Front Chem 2019; 7:807. [PMID: 31850304 PMCID: PMC6901994 DOI: 10.3389/fchem.2019.00807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid dysregulation has been implicated in multiple sclerosis due to its involvement during and after inflammation. In this study, we have profiled fatty acids (FAs) in the mouse model of multiple sclerosis with new capabilities of assigning carbon-carbon double bond (C=C) location(s) and quantifying C=C location isomers. These new capabilities are enabled by pairing the solution phase Paternò-Büchi (PB) reaction that modifies C=C bonds in FAs, with tandem mass spectrometry (MS/MS), termed as PB-MS/MS. A series of unsaturated FAs and C=C location isomers have been identified, including FA17:1 (Δ10), FA18:1 (Δ9 and Δ11), FA18:2 (Δ9 and Δ12), and FA 20:4 (Δ5, Δ8, Δ11, Δ14). Notable differences in saturated and unsaturated FAs between normal and experimental autoimmune encephalomyelitis (EAE) mice spinal cords have been detected. Furthermore, the effects of hydralazine, a scavenger of acrolein, on profile changes of FAs in mice were studied. Increased Δ11-to-Δ9 isomer ratios for FA 18:1 were noted in the diseased samples as compared to the control. The present work provides a facile and robust analytical method for the quantitation of unsaturated FAs as well as identification of FA C=C location isomers, which will facilitate discovering prospective lipid markers in multiple sclerosis.
Collapse
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Ran Tian
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Zheng Ouyang
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Yu Xia
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Calderón-Ospina CA, Nava-Mesa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther 2019; 26:5-13. [PMID: 31490017 PMCID: PMC6930825 DOI: 10.1111/cns.13207] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background Neurotropic B vitamins play crucial roles as coenzymes and beyond in the nervous system. Particularly vitamin B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) contribute essentially to the maintenance of a healthy nervous system. Their importance is highlighted by many neurological diseases related to deficiencies in one or more of these vitamins, but they can improve certain neurological conditions even without a (proven) deficiency. Aim This review focuses on the most important biochemical mechanisms, how they are linked with neurological functions and what deficits arise from malfunctioning of these pathways. Discussion We discussed the main role of B Vitamins on several functions in the peripheral and central nervous system (PNS and CNS) including cellular energetic processes, antioxidative and neuroprotective effects, and both myelin and neurotransmitter synthesis. We also provide an overview of possible biochemical synergies between thiamine, pyridoxine, and cobalamin and discuss by which major roles each of them may contribute to the synergy and how these functions are inter‐related and complement each other. Conclusion Taking into account the current knowledge on the neurotropic vitamins B1, B6, and B12, we conclude that a biochemical synergy becomes apparent in many different pathways in the nervous system, particularly in the PNS as exemplified by their combined use in the treatment of peripheral neuropathy.
Collapse
Affiliation(s)
- Carlos Alberto Calderón-Ospina
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio Orlando Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
7
|
McDaniel HR, LaGanke C, Bloom L, Goldberg S, Hensel J, Lantigua LA, Lages LC, Atlas SE, Woolger JM, Lewis JE. The Effect of Broad-Spectrum Dietary Supplementation on Quality of Life, Symptom Severity, and Functioning in Multiple Sclerosis. J Diet Suppl 2019; 17:718-732. [PMID: 31422724 DOI: 10.1080/19390211.2019.1651435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease that exerts a significant quality-of-life toll on patients. According to the literature, broad-spectrum dietary supplementation including a variety of nutrients, polysaccharides, and compounds may improve the quality of life, functionality, and symptom severity in people with MS. Individuals (n = 15) diagnosed with relapsing-remitting MS (RRMS) for an average of 12.4 years (SD = 7.4; R = 2, 25) were enrolled in a one-year open-label clinical trial in which they consumed a broad-spectrum dietary supplement regimen three times daily. Participants were assessed at baseline and at 3, 6, 9, and 12 months with the following: (1) Functional Assessment of MS (FAMS), (2) the EQ-5D-3L, (3) Beck Depression Inventory-II (BDI), (4) Health Conditions Discomfort Scale (HCDS), and (5) Self-Assessment of Severity of MS Symptoms Scale (SASMSSS). Participants included seven females and eight males (M age = 51.3 years; SD = 7.2; R = 38, 65). Few minor gastrointestinal effects were reported. At the end of the intervention, participants showed significant improvements in all outcome measures, particularly functionality on the FAMS, overall quality of life on the EQ-5D-3L, fewer depressive symptoms on the BDI, and improved severity of symptoms on the HCDS and the SASMSSS. Our results suggest that dietary supplementation containing a variety of nutrients can improve the quality of life, severity of disease symptoms, and functionality in MS patients. These findings are clinically promising for MS patients, given the lack of treatment options geared toward improving quality of life in this population.
Collapse
Affiliation(s)
| | | | - Laura Bloom
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sharon Goldberg
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Laura A Lantigua
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucas C Lages
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven E Atlas
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judi M Woolger
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John E Lewis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Osorio-Querejeta I, Alberro A, Muñoz-Culla M, Mäger I, Otaegui D. Therapeutic Potential of Extracellular Vesicles for Demyelinating Diseases; Challenges and Opportunities. Front Mol Neurosci 2018; 11:434. [PMID: 30532691 PMCID: PMC6265410 DOI: 10.3389/fnmol.2018.00434] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis is a demyelinating disease of the central nervous system for which no remyelination therapy is available and alternative strategies are being tested. Extracellular vesicles (EVs) have emerged as players in physiological and pathological processes and are being proposed as therapeutic targets and mediators. More concretely, EVs have shown to be involved in myelination related processes such as axon-oligodendrocyte communication or oligodendrocyte precursor cell migration. In addition, EVs have been shown to carry genetic material and small compounds, and to be able to cross the Blood Brain Barrier. This scenario led scientists to test the ability of EVs as myelin regeneration promoters in demyelinating diseases. In this review we will address the use of EVs as remyelination promoters and the challenges and opportunities of this therapy will be discussed.
Collapse
Affiliation(s)
- Iñaki Osorio-Querejeta
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - Ainhoa Alberro
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maider Muñoz-Culla
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - David Otaegui
- Multiple Sclerosis Unit, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network of Multiple Sclerosis, Barcelona, Spain
| |
Collapse
|
9
|
Transbulbar B-Mode Sonography for Clinical Phenotyping Multiple Sclerosis. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to assess putative differences in optic nerve sheath diameter (ONSD) and associated clinical/paraclinical variables between relapsing remitting (RR) and secondary progressive (SP) multiple sclerosis (MS) patients. We examined 60 relapse-free MS patients and 35 healthy controls by means of transbulbar B-mode sonography (TBS). Expanded disability status scale (EDSS) values were from 3 to 4 indicated patients with a transitional RR to SP phenotype. Mean ONSD was significantly lower in MS patients. Mean ONSD measured at 5 mm from the eyeball (ONSD5) was significantly lower in SP than in RR patients, while ONSD measured at 3 mm from the eyeball (ONSD3) was statistically higher in RR than in the transitional group. The myelination index (MI), i.e., the ratio of ONSD3 to ONSD5, was used to assess the relative myelination of the optic nerve (ON). Higher ONSD5 and MI (0.90) corresponded to patients with the RR phenotype having a mean EDSS of 2.0; lower MI (0.84) clustered the transitional patients having a mean EDSS of 3.7. Finally, lower MI with low ONSD3 identified the SP phenotype having a mean EDSS ≥ 4.0. The TBS in MS highlights chronic optic neuropathy, caused by early subclinical axonal loss and demyelination.
Collapse
|
10
|
Moore TL, Bowley BGE, Shultz PL, Calderazzo SM, Shobin EJ, Uprety AR, Rosene DL, Moss MB. Oral curcumin supplementation improves fine motor function in the middle-aged rhesus monkey. Somatosens Mot Res 2018; 35:1-10. [PMID: 29447046 DOI: 10.1080/08990220.2018.1432481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aged individuals experience decreased fine motor function of the hand and digits, which could result, in part, from the chronic, systemic state of inflammation that occurs with aging. Recent research for treating age-related inflammation has focused on the effects of nutraceuticals that have anti-inflammatory properties. One particular dietary polyphenol, curcumin, the principal curcuminoid of the spice turmeric, has been shown to have significant anti-inflammatory effects and there is mounting evidence that curcumin may serve to reduce systemic inflammation. Therefore, it could be useful for alleviating age-related impairments in fine motor function. To test this hypothesis we assessed the efficacy of a dietary intervention with a commercially available optimized curcumin to ameliorate or delay the effects of aging on fine motor function of the hand of rhesus monkeys. We administered oral daily doses of curcumin or a control vehicle to 11 monkeys over a 14- to 18-month period in which they completed two rounds of fine motor function testing. The monkeys receiving curcumin were significantly faster at retrieving a food reward by round 2 of testing than monkeys receiving a control vehicle. Further, the monkeys receiving curcumin demonstrated a greater degree of improvement in performance on our fine motor task by round 2 of testing than monkeys receiving a control vehicle. These findings reveal that fine motor function of the hand and digits is improved in middle-aged monkeys receiving chronic daily administration of curcumin.
Collapse
Affiliation(s)
- Tara L Moore
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,b Department of Neurology , Boston University School of Medicine , Boston , MA , USA
| | - Bethany G E Bowley
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Penny L Shultz
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Samantha M Calderazzo
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Eli J Shobin
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,c Graduate Program in Neuroscience , Boston University School of Medicine , Boston , MA , USA
| | - Ajay R Uprety
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA
| | - Douglas L Rosene
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,d Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| | - Mark B Moss
- a Department of Anatomy & Neurobiology , Boston University School of Medicine , Boston , MA , USA.,b Department of Neurology , Boston University School of Medicine , Boston , MA , USA.,d Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| |
Collapse
|
11
|
Vitamin D in Household Food Supplies of Homebound Older Adults Receiving Home-Delivered Meals. TOP CLIN NUTR 2017. [DOI: 10.1097/tin.0000000000000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Rittich AB, Ellrich J, Said Yekta-Michael S. Assessment of lingual nerve functions after smoking cessation. Acta Odontol Scand 2017; 75:338-344. [PMID: 28372503 DOI: 10.1080/00016357.2017.1308551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cigarette smoking is associated with a variety of oral diseases. A previous study showed a reduction of thermal sensitivity in the innervation area of the lingual nerve in smokers possibly caused by a degeneration of thermosensitive receptors as a consequence of smoking. The current study investigates somatosensory changes in ex-smokers. MATERIALS AND METHODS Sensory functions in innervation areas of lingual nerve were investigated in 40 ex-smokers by psychophysical means. Functions of lingual nerve in 40 ex-smokers were compared to those in 40 smokers and 40 non-smokers. Subjects were investigated using quantitative sensory testing (QST, cold and warm detection, thermal sensory limen, heat and cold pain, and mechanical detection). RESULTS Significant differences were found in both groups, ex-smokers and smokers compared to non-smokers. Cold (p < .001), warm (ex-smokers: p < .01; smokers: p < .001) detection thresholds and thermal sensory limen (p < .001) showed significantly lower sensitivity in ex-smokers and smokers in comparison to non-smokers. CONCLUSIONS The lower temperature sensitivity of ex-smokers compared to that in non-smokers indicates a reduction of somatosensory function of the tongue, possibly caused by irreversible nerve degeneration associated with smoking. Influencing factors leading to sensory changes could be modulation of thermo-receptors, demyelination as well as a change of the epithelial structure.
Collapse
Affiliation(s)
- Anne Barbara Rittich
- Department of Prosthodontics and Biomaterials, Centre of Implantology, University Hospital Aachen, Aachen, Germany,
| | - Jens Ellrich
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sareh Said Yekta-Michael
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University Hospital Aachen, Aachen, Germany
- Interdisciplinary Centre for Clinical Research, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
13
|
Aging of cerebral white matter. Ageing Res Rev 2017; 34:64-76. [PMID: 27865980 DOI: 10.1016/j.arr.2016.11.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022]
Abstract
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions.
Collapse
|
14
|
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29:90-112. [PMID: 27353257 PMCID: PMC5991498 DOI: 10.1016/j.arr.2016.06.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Answering the question as to why we age is tantamount to answering the question of what is life itself. There are countless theories as to why and how we age, but, until recently, the very definition of aging - senescence - was still uncertain. Here, we summarize the main views of the different models of senescence, with a special emphasis on the biochemical processes that accompany aging. Though inherently complex, aging is characterized by numerous changes that take place at different levels of the biological hierarchy. We therefore explore some of the most relevant changes that take place during aging and, finally, we overview the current status of emergent aging therapies and what the future holds for this field of research. From this multi-dimensional approach, it becomes clear that an integrative approach that couples aging research with systems biology, capable of providing novel insights into how and why we age, is necessary.
Collapse
Affiliation(s)
- João Pinto da Costa
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gustavo M Silva
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Armando C Duarte
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Yunes Quartino PJ, Pusterla JM, Galván Josa VM, Fidelio GD, Oliveira RG. CNS myelin structural modification induced in vitro by phospholipases A2. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:123-9. [PMID: 26514604 DOI: 10.1016/j.bbamem.2015.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
Abstract
Myelin is the self-stacked membrane surrounding axons; it is also the target of several pathological and/or neurodegenerative processes like multiple sclerosis. These processes involve, among others, the hydrolytic attack by phospholipases. In this work we describe the changes in isolated myelin structure after treatment with several secreted PLA2 (sPLA2), by using small angle x-ray scattering (SAXS) measurements. It was observed that myelin treated with all the tested sPLA2s (from cobra and bee venoms and from pig pancreas) preserved the lamellar structure but displayed an enlarged separation between membranes in certain zones. Additionally, the peak due to membrane asymmetry was clearly enhanced. The coherence length was also lower than the non-treated myelin, indicating increased disorder. These SAXS results were complemented by Langmuir film experiments to follow myelin monolayer hydrolysis at the air/water interface by a decrease in electric surface potential at different surface pressures. All enzymes produced hydrolysis with no major qualitative difference between the isoforms tested.
Collapse
Affiliation(s)
- Pablo J Yunes Quartino
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina
| | - Julio M Pusterla
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina
| | - Victor M Galván Josa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FaMAF, Universidad Nacional de Córdoba, Argentina
| | - Gerardo D Fidelio
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina
| | - Rafael G Oliveira
- Departamento de Química Biológica-CIQUIBIC (CONICET), Facultad de Ciencias Químicas, Universidad de Nacional de Córdoba, Haya de la Torre S/N, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
16
|
Harlow DE, Honce JM, Miravalle AA. Remyelination Therapy in Multiple Sclerosis. Front Neurol 2015; 6:257. [PMID: 26696956 PMCID: PMC4674562 DOI: 10.3389/fneur.2015.00257] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder of the central nervous system that results in destruction of the myelin sheath that surrounds axons and eventual neurodegeneration. Current treatments approved for the treatment of relapsing forms of MS target the aberrant immune response and successfully reduce the severity of attacks and frequency of relapses. Therapies are still needed that can repair damage particularly for the treatment of progressive forms of MS for which current therapies are relatively ineffective. Remyelination can restore neuronal function and prevent further neuronal loss and clinical disability. Recent advancements in our understanding of the molecular and cellular mechanisms regulating myelination, as well as the development of high-throughput screens to identify agents that enhance myelination, have lead to the identification of many potential remyelination therapies currently in preclinical and early clinical development. One problem that has plagued the development of treatments to promote remyelination is the difficulty in assessing remyelination in patients with current imaging techniques. Powerful new imaging technologies are making it easier to discern remyelination in patients, which is critical for the assessment of these new therapeutic strategies during clinical trials. This review will summarize what is currently known about remyelination failure in MS, strategies to overcome this failure, new therapeutic treatments in the pipeline for promoting remyelination in MS patients, and new imaging technologies for measuring remyelination in patients.
Collapse
Affiliation(s)
- Danielle E Harlow
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Justin M Honce
- Department of Radiology, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Augusto A Miravalle
- Department of Neurology, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| |
Collapse
|
17
|
D'Antona G, Nabavi SM, Micheletti P, Di Lorenzo A, Aquilani R, Nisoli E, Rondanelli M, Daglia M. Creatine, L-carnitine, and ω3 polyunsaturated fatty acid supplementation from healthy to diseased skeletal muscle. BIOMED RESEARCH INTERNATIONAL 2014; 2014:613890. [PMID: 25243159 PMCID: PMC4163371 DOI: 10.1155/2014/613890] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Department of Molecular Medicine and Laboratory for Motor Activities in Rare Diseases (LUSAMMR), University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran
| | - Piero Micheletti
- Department of Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Roberto Aquilani
- Maugeri Foundation IRCCS, Montescano Scientific Institute, Via Per Montescano 31, 27040 Montescano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Mariangela Rondanelli
- Human Nutrition Section, Health Sciences Department, University of Pavia, Azienda di Servizi alla Persona, Via Emilia 12, 27100 Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
18
|
Hein C, Batista EL. Obesity and cumulative inflammatory burden: a valuable risk assessment parameter in caring for dental patients. J Evid Based Dent Pract 2014; 14 Suppl:17-26.e1. [PMID: 24929585 DOI: 10.1016/j.jebdp.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED A new model of risk assessment that recognizes the importance of reducing patients' cumulative inflammatory burden by targeting overweight and obesity, in individuals with periodontal disease, may be a valuable risk assessment parameter in caring for dental patients. BACKGROUND The growing body of evidence that suggests obesity, Metabolic Syndrome and periodontal disease are interrelated offers an unprecedented opportunity to adopt a new model of risk assessment that has the potential to beneficially influence not only the periodontal health of obese and overweight patients, but simultaneously may also reduce a person's overall risk for developing heart disease and type 2 diabetes, and perhaps other inflammatory driven disease states. METHODS This paper presents an overview of research that builds the case for a new model of risk assessment that focuses on the cumulative inflammatory burden that may be elevated by the presence of periodontal disease in obese patients. In addition, the biological plausibility of the concepts of inflammatory priming and inflammatory loading is discussed, and several simple ideas are suggested for identifying at-risk patients. CONCLUSIONS Given the significant rise in obesity and the impact that obesity has on periodontal health and other inflammatory driven, systemic disease states, adoption of a new model of risk assessment is suggested-one that considers an individual's cumulative inflammatory burden which may be amplified as a result of coexisting obesity and other components of Metabolic Syndrome and periodontal disease. Knowledge gathered thus far combined with further clinical research must be translated into better ways to treat and maintain obese periodontal patients. These measures may pave the way for prevention of metabolic diseases and obesity with a relevant impact on patients' periodontal status.
Collapse
Affiliation(s)
- Casey Hein
- Division of Periodontics, International Centre for Oral-Systemic Health, College of Dentistry, University of Manitoba, Canada; Division of Continuing Professional Development, College of Medicine, Faculty of Health Sciences, University of Manitoba, Canada; Casey Hein & Associates, USA.
| | - Eraldo L Batista
- Division of Periodontics, Department of Dental Diagnostics & Surgical Sciences and Department of Oral Biology, College of Dentistry, Faculty of Health Sciences, University of Manitoba, Canada
| |
Collapse
|