1
|
Basoglu H, Degirmencioglu İ, Ozturk H, Yorulmaz N, Aydin‐Abidin S, Abidin I. Title: A Boron‐Chelating Piperazine‐Tethered Schiff Base Can Modulate Excitability in Brain Slices in a Specific Frequency Range. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe ability of boron‐containing compounds to make various bonds with biological targets draws attention in their use as new therapeutic agents. In this study, the effect of a newly synthesized molecule with the short name fmpemboron, “Difluoro [2‐[([2‐[4‐(2,3,4‐trimethoxybenzyl)piperazin‐1‐yl]ethyl] imino‐κN)methyl]phenolato‐κO]boron (5)”on the excitability of neurons in the brain was investigated for the first time. First of all, fmpemboron was synthesized and characterized. Secondly, virtual scanning of the molecule was performed using ADME and molecular docking methods. Then, epileptiform activities were induced in mouse brain slices using Mg‐free or 4AP methods, and the effect of fmpemboron (5) at different concentrations was examined. The absorbance peak wavelength of fmpemboron (5) is between 330–340 nm and the fluorescence emission peak is 435 nm. According to ADME and molecular docking results, fmpemboron (5) can cross the blood‐brain barrier (BBB) and has affinity for the NMDA receptor. It also significantly reduces the power of oscillations between 8–12 Hz and 13–29 Hz in epileptiform activities generated by the Mg‐free method. Administration of 10 μM fmpemboron (5) had a modulatory effect on epileptiform activities, indicating that fmpemboron (5) can affect various neurological functions through NMDA channels. However, in‐vivo dose‐dependent studies are required to further investigate the effects of this novel molecule.
Collapse
Affiliation(s)
- Harun Basoglu
- Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| | - İsmail Degirmencioglu
- Department of Chemistry Faculty of Science Karadeniz Technical University Trabzon Turkey
| | - Hilal Ozturk
- Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| | - Nuri Yorulmaz
- Department of Physics Faculty of Science Harran University, Sanliurfa, Turkey Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| | - Selcen Aydin‐Abidin
- Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| | - Ismail Abidin
- Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| |
Collapse
|
2
|
Liu J, Li J, Zhang S, Ding M, Yu N, Li J, Wang X, Li Z. Antibody-conjugated gold nanoparticles as nanotransducers for second near-infrared photo-stimulation of neurons in rats. NANO CONVERGENCE 2022; 9:13. [PMID: 35312875 PMCID: PMC8938552 DOI: 10.1186/s40580-022-00304-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/19/2021] [Accepted: 03/01/2022] [Indexed: 05/28/2023]
Abstract
Infrared neural stimulation with the assistance of photothermal transducers holds great promise as a mini-invasive neural modulation modality. Optical nanoparticles with the absorption in the near-infrared (NIR) window have emerged as excellent photothermal transducers due to their good biocompatibility, surface modifiability, and tunable optical absorption. However, poor activation efficiency and limited stimulation depth are main predicaments encountered in the neural stimulation mediated by these nanoparticles. In this study, we prepared a targeted polydopamine (PDA)-coated gold (Au) nanoparticles with specific binding to thermo-sensitive ion channel as nanotransducers for second near-infrared (NIR-II) photo-stimulation of neurons in rats. The targeted Au nanoparticles were constructed via conjugation of anti-TRPV1 antibody with PEGylated PDA-coated Au nanoparticles and thus exhibited potent photothermal performance property in the second NIR (NIR-II) window and converted NIR-II light to heat to rapidly activate Ca2+ influx of neurons in vitro. Furthermore, wireless photothermal stimulation of neurons in living rat successfully evoke excitation in neurons in the targeted brain region as deep as 5 mm beneath cortex. This study thus demonstrates a remote-controlled strategy for neuromodulation using photothermal nanotransducers.
Collapse
Affiliation(s)
- Jiansheng Liu
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, 519000, People's Republic of China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jiajia Li
- Department of Neurology, Shanghai Eighth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Shu Zhang
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Mengbin Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Ningyue Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200011, People's Republic of China.
| | - Zhaohui Li
- Department of Neurology, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, 519000, People's Republic of China.
| |
Collapse
|
3
|
Brivaracetam Modulates Short-Term Synaptic Activity and Low-Frequency Spontaneous Brain Activity by Delaying Synaptic Vesicle Recycling in Two Distinct Rodent Models of Epileptic Seizures. J Mol Neurosci 2022; 72:1058-1074. [PMID: 35278193 DOI: 10.1007/s12031-022-01983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2021] [Accepted: 02/03/2022] [Indexed: 10/18/2022]
Abstract
Brivaracetam (BRV) is an anti-seizure drug for the treatment of focal and generalized epileptic seizures shown to augment short-term synaptic fatigue by slowing down synaptic vesicle recycling rates in control animals. In this study, we sought to investigate whether altered short-term synaptic activities could be a pathological hallmark during the interictal periods of epileptic seizures in two well-established rodent models, as well as to reveal BRV's therapeutic roles in altered short-term synaptic activities and low-frequency band spontaneous brain hyperactivity in these models. In our study, the electrophysiological field excitatory post-synaptic potential (fEPSP) recordings were performed in rat hippocampal brain slices from the CA1 region by stimulation of the Schaffer collateral/commissural pathway with or without BRV (30 μM for 3 h) in control or epileptic seizure (induced by pilocarpine (PILO) or high potassium (h-K+)) models. Short-term synaptic activities were induced by 5, 10, 20, and 40-Hz stimulation sequences. The effects of BRV on pre-synaptic vesicle mobilization were visually assessed by staining the synaptic vesicles with FM1-43 dye followed by imaging with a two-photon microscope. In the fEPSP measurements, short-term synaptic fatigue was found in the control group, while short-term synaptic potentiation (STP) was detected in both PILO and h-K+ models. STP was decreased after the slices were treated with BRV (30 μM) for 3 h. BRV also exhibited its therapeutic benefits by decreasing abnormal peak power (frequency range of 8-13 Hz, 31% of variation for PILO model, 25% of variation for h-K+ model) and trough power (frequency range of 1-4 Hz, 66% of variation for PILO model, 49% of variation for h-K+ model), and FM1-43 stained synaptic vesicle mobility (64% of the variation for PILO model, 45% of the variation for h-K+ model) in these epileptic seizure models. To the best of our knowledge, this was the first report that BRV decreased the STP and abnormal low-frequency brain activities during the interictal phase of epileptic seizures by slowing down the mobilization of synaptic vesicles in two rodent models. These mechanistic findings would greatly advance our understanding of BRV's pharmacological role in pathomechanisms of epileptic seizures and its treatment strategy optimization to avoid or minimize BRV-induced possible adverse side reactions.
Collapse
|
4
|
Rezaei M, Ahmadirad N, Ghasemi Z, Shojaei A, Raoufy MR, Barkley V, Fathollahi Y, Mirnajafi-Zadeh J. Alpha adrenergic receptors have role in the inhibitory effect of electrical low frequency stimulation on epileptiform activity in rats. Int J Neurosci 2021; 133:496-504. [PMID: 33998961 DOI: 10.1080/00207454.2021.1929211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Abstract
Aim: Low frequency stimulation (LFS) inhibits neuronal hyperexcitability following epileptic activity. However, knowledge about LFS' inhibitory mechanisms is lacking. Here, α1 and α2 adrenergic receptors' roles in mediating LFS inhibitory action on high-K+ induced epileptiform activity (EA) was examined in rat hippocampal slices.Materials and methods: LFS (1 Hz, 900 pulses) was applied to the Schaffer collaterals. Whole-cell, patch clamp recording was used to measure changes in CA1 pyramidal neurons' excitability. By applying high-K+ on hippocampal slices, EA was induced, and neuronal excitability increased.Results: When administered at the beginning of EA, LFS reduced neuronal excitability. In the presence of prazosin (10 µM, an α1 adrenergic receptor antagonist) and yohimbine (5 µM, an α2 adrenergic receptor antagonist), LFS' typically has a restorative impact on EA-induced membrane potential hyperpolarization and spike firing frequency, but this effect was reduced after high-K+ washout; These antagonists did not have a significant effect on LFS' inhibitory action on spike firing during EA.Conclusion: These findings suggest that LFS' anticonvulsant effect, on neuronal hyperexcitability following high-K+ EA, may be mediated partly through α adrenergic receptors in hippocampal slices.
Collapse
Affiliation(s)
- Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Khateb M, Bosak N, Herskovitz M. The Effect of Anti-seizure Medications on the Propagation of Epileptic Activity: A Review. Front Neurol 2021; 12:674182. [PMID: 34122318 PMCID: PMC8191738 DOI: 10.3389/fneur.2021.674182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The propagation of epileptiform events is a highly interesting phenomenon from the pathophysiological point of view, as it involves several mechanisms of recruitment of neural networks. Extensive in vivo and in vitro research has been performed, suggesting that multiple networks as well as cellular candidate mechanisms govern this process, including the co-existence of wave propagation, coupled oscillator dynamics, and more. The clinical importance of seizure propagation stems mainly from the fact that the epileptic manifestations cannot be attributed solely to the activity in the seizure focus itself, but rather to the propagation of epileptic activity to other brain structures. Propagation, especially when causing secondary generalizations, poses a risk to patients due to recurrent falls, traumatic injuries, and poor neurological outcome. Anti-seizure medications (ASMs) affect propagation in diverse ways and with different potencies. Importantly, for drug-resistant patients, targeting seizure propagation may improve the quality of life even without a major reduction in simple focal events. Motivated by the extensive impact of this phenomenon, we sought to review the literature regarding the propagation of epileptic activity and specifically the effect of commonly used ASMs on it. Based on this body of knowledge, we propose a novel classification of ASMs into three main categories: major, minor, and intermediate efficacy in reducing the propagation of epileptiform activity.
Collapse
Affiliation(s)
- Mohamed Khateb
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Noam Bosak
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Moshe Herskovitz
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel.,The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Dong L, Li G, Gao Y, Lin L, Zhang KH, Tian CX, Cao XB, Zheng Y. Effect of priming low-frequency magnetic fields on zero-Mg2+ -induced epileptiform discharges in rat hippocampal slices. Epilepsy Res 2020; 167:106464. [DOI: 10.1016/j.eplepsyres.2020.106464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022]
|
7
|
Ghasemi Z, Naderi N, Shojaei A, Raoufy MR, Ahmadirad N, Barkley V, Mirnajafi-Zadeh J. The inhibitory effect of different patterns of low frequency stimulation on neuronal firing following epileptiform activity in rat hippocampal slices. Brain Res 2019; 1706:184-195. [DOI: 10.1016/j.brainres.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
|
8
|
Shivacharan RS, Chiang CC, Zhang M, Gonzalez-Reyes LE, Durand DM. Self-propagating, non-synaptic epileptiform activity recruits neurons by endogenous electric fields. Exp Neurol 2019; 317:119-128. [PMID: 30776338 DOI: 10.1016/j.expneurol.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2018] [Revised: 01/18/2019] [Accepted: 02/08/2019] [Indexed: 01/23/2023]
Abstract
It is well documented that synapses play a significant role in the transmission of information between neurons. However, in the absence of synaptic transmission, neural activity has been observed to continue to propagate. Previous studies have shown that propagation of epileptiform activity takes place in the absence of synaptic transmission and gap junctions and is outside the range of ionic diffusion and axonal conduction. Computer simulations indicate that electric field coupling could be responsible for the propagation of neural activity under pathological conditions such as epilepsy. Electric fields can modulate neuronal membrane voltage, but there is no experimental evidence suggesting that electric field coupling can mediate self-regenerating propagation of neural activity. Here we examine the role of electric field coupling by eliminating all forms of neural communications except electric field coupling with a cut through the neural tissue. We show that 4-AP induced activity generates an electric field capable of recruiting neurons on the distal side of the cut. Experiments also show that applied electric fields with amplitudes similar to endogenous values can induce propagating waves. Finally, we show that canceling the electrical field at a given point can block spontaneous propagation. The results from these in vitro electrophysiology experiments suggest that electric field coupling is a critical mechanism for non-synaptic neural propagation and therefore could contribute to the propagation of epileptic activity in the brain.
Collapse
Affiliation(s)
- Rajat S Shivacharan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chia-Chu Chiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mingming Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luis E Gonzalez-Reyes
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dominique M Durand
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Chang YY, Gong XW, Gong HQ, Liang PJ, Zhang PM, Lu QC. GABA A Receptor Activity Suppresses the Transition from Inter-ictal to Ictal Epileptiform Discharges in Juvenile Mouse Hippocampus. Neurosci Bull 2018; 34:1007-1016. [PMID: 30128691 DOI: 10.1007/s12264-018-0273-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Exploring the transition from inter-ictal to ictal epileptiform discharges (IDs) and how GABAA receptor-mediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment. We used Mg2+-free artificial cerebrospinal fluid (ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg2+-free ACSF for 10 min-20 min, synchronous recurrent seizure-like events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges (IIDs) to pre-ictal epileptiform discharges (PIDs), and then to IDs. During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 μmol/L of the GABAA receptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 μmol/L muscimol abolished all the epileptiform discharges. When the GABAA receptor antagonist bicuculline was applied at 10 μmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABAA receptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus.
Collapse
Affiliation(s)
- Yan-Yan Chang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xin-Wei Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hai-Qing Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qin-Chi Lu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
10
|
Ghasemi Z, Naderi N, Shojaei A, Ahmadirad N, Raoufy MR, Mirnajafi-Zadeh J. Low Frequency Electrical Stimulation Attenuated The Epileptiform Activity-Induced Changes in Action Potential Features in Hippocampal CA1 Pyramidal Neurons. CELL JOURNAL 2018; 20:355-360. [PMID: 29845789 PMCID: PMC6004994 DOI: 10.22074/cellj.2018.5443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/17/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
Objective Electrical low frequency stimulation (LFS) is a new therapeutic method that moderates hyperexcitability during epileptic states. Seizure occurrence is accompanied by some changes in action potential (AP) features. In this study, we investigated the inhibitory action of LFS on epileptiform activity (EA) induced-changes in AP features in hippocampal CA1 pyramidal neurons. Materials and Methods In this experimental study, we induced EA in hippocampal slices by increasing the extracellular potassium (K+) concentration to 12 mM. LFS (1 Hz) was applied to the Schaffer collaterals at different pulse numbers (600 and 900) at the beginning of the EA. Changes in AP features recorded by whole-cell patch clamp recording were compared using phase plot analysis. Results Induction of EA depolarized membrane potential, decreased peak amplitude, as well as the maximum rise and decay slopes of APs. Administration of 1 Hz LFS at the beginning of EA prevented the above mentioned changes in AP features. This suppressive effect of LFS depended on the LFS pulse number, such that application of 900 pulses of LFS had a stronger recovery effect on AP features that changed during EA compared to 600 pulses of LFS. The constructed phase plots of APs revealed that LFS at 900 pulses significantly decreased the changes in resting membrane potential (RMP), peak amplitude, and maximum rise and decay slopes that appeared during EA. Conclusion Increasing the numbers of LFS pulses can magnify its inhibitory effects on EA-induced changes in AP features.
Collapse
Affiliation(s)
- Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| |
Collapse
|
11
|
Ghasemi Z, Naderi N, Shojaei A, Raoufy MR, Ahmadirad N, Mirnajafi-Zadeh J. Effect of Low-Frequency Electrical Stimulation on the High-K+-Induced Neuronal Hyperexcitability in Rat Hippocampal Slices. Neuroscience 2018; 369:87-96. [DOI: 10.1016/j.neuroscience.2017.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022]
|
12
|
Li X, Zhang HJ, Wang Q, Zhang DW, Wu D, Li W, Quan ZS. Current Study of the Mechanism of Action of the Potential Anti-Epileptic Agent Q808. Molecules 2017; 22:molecules22071134. [PMID: 28686214 PMCID: PMC6152255 DOI: 10.3390/molecules22071134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2017] [Accepted: 07/01/2017] [Indexed: 11/23/2022] Open
Abstract
Our previous study showed that the anticonvulsant Q808 might be effective against seizures induced by maximal electroshock, pentylenetetrazole (PTZ), isoniazid (ISO), thiosemicarbazide (THIO), and 3-mercaptopropionic acid (3-MP). In the present study, we explored the possible mechanism of action of Q808. Results obtained with high-performance liquid chromatography (HPLC) suggest that Q808 may affect neurotransmitter content in the brain, by specifically increasing GABA content in the rat hippocampus at doses of 40 mg/kg and 80 mg/kg, and by reducing the content of glutamate and glutamine in the rat thalamus at a dose of 80 mg/kg. Intriguingly, there were no changes in the neurotransmitter content in the cortex in response to Q808. In vitro brain slice electrophysiological studies showed that 10−5 M Q808 enhanced the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in corn cells of the CA1 area of the hippocampus, and had no effect on the amplitude of sIPSCs, the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), or γ-aminobutyric acid (GABA) receptor-mediated currents in primary cultured hippocampal neurons. These findings suggest that the antiepileptic activity of Q808 may be due to its ability to increase the amount of GABA between synapses, without affecting the function of GABA receptors.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | - Hong-Jian Zhang
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Qing Wang
- Academy of Chinese Medical Sciences of Jilin Province, Changchun 130012, China.
| | - Dian-Wen Zhang
- Academy of Chinese Medical Sciences of Jilin Province, Changchun 130012, China.
| | - Di Wu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun 130012, China.
| | - Wei Li
- Academy of Chinese Medical Sciences of Jilin Province, Changchun 130012, China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
13
|
Wang XX, Li YH, Gong HQ, Liang PJ, Zhang PM, Lu QC. The Subiculum: A Potential Site of Ictogenesis in a Neonatal Seizure Model. Front Neurol 2017; 8:147. [PMID: 28473802 PMCID: PMC5397469 DOI: 10.3389/fneur.2017.00147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2016] [Accepted: 03/31/2017] [Indexed: 01/03/2023] Open
Abstract
Studies have reported that the subiculum is one origin of interictal-like discharges in adult patients with temporal lobe epilepsy; however, whether the subiculum represents a site of ictogenesis for neonatal seizures remains unclear. In this study, multi-electrode recording techniques were used to record epileptiform discharges induced by low-Mg2+ or high-K+ artificial cerebrospinal fluid in neonatal mouse hippocampal slices, and the spatiotemporal dynamics of the epileptiform discharges were analyzed. The Na+–K+–2Cl− cotransporter 1 (NKCC1) blocker, bumetanide, was applied to test its effect upon epileptiform discharges in low-Mg2+ model. The effect of N-methyl-d-aspartate receptors (NMDARs) antagonist, d-AP5, upon the epileptiform discharges in high-K+ model was examined. We found that the neonatal subiculum not only relayed epileptiform discharges emanating from the hippocampus proper (HP) but also initiated epileptiform discharges (interictal- and ictal-like discharges) independently. The latency to onset of the first epileptiform discharge initiated in the subiculum was similar to that initiated in the HP. Bumetanide efficiently blocked seizures in the neonatal HP, but was less effectively in suppressing seizures initiated in the subiculum. In high-K+ model, d-AP5 was more effective in blocking seizures initiated in the subiculum than that initiated in the HP. Furthermore, Western blotting analysis showed that NKCC1 expression was lower in the subiculum than that in the HP, whereas the expression of NMDAR subunits, NR2A and NR2B, was higher in the subiculum than that in the HP. Our results revealed that the subiculum was a potential site of ictogenesis in neonatal seizures and possessed similar seizure susceptibility to the HP. GABAergic excitation resulting from NKCC1 may play a less dominant role during ictogenesis in the subiculum than that in the HP. The subicular ictogenesis may be related to the glutamatergic excitation mediated by NMDARs.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Hua Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Qing Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qin-Chi Lu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Anti-Epileptic Drug Combination Efficacy in an In Vitro Seizure Model - Phenytoin and Valproate, Lamotrigine and Valproate. PLoS One 2017; 12:e0169974. [PMID: 28076384 PMCID: PMC5226812 DOI: 10.1371/journal.pone.0169974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2016] [Accepted: 12/24/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the relative efficacy of different classes of commonly used anti-epileptic drugs (AEDs) with different mechanisms of action, individually and in combination, to suppress epileptiform discharges in an in vitro model. Extracellular field potential were recorded in 450 μm thick transverse hippocampal slices prepared from juvenile Wistar rats, in which “epileptiform discharges” (ED’s) were produced with a high-K+ (8.5 mM) bicarbonate-buffered saline solution. Single and dual recordings in stratum pyramidale of CA1 and CA3 regions were performed with 3–5 MΩ glass microelectrodes. All drugs—lamotrigine (LTG), phenytoin (PHT) and valproate (VPA)—were applied to the slice by superfusion at a rate of 2 ml/min at 32°C. Effects upon frequency of ED’s were assessed for LTG, PHT and VPA applied at different concentrations, in isolation and in combination. We demonstrated that high-K+ induced ED frequency was reversibly reduced by LTG, PHT and VPA, at concentrations corresponding to human therapeutic blood plasma concentrations. With a protocol using several applications of drugs to the same slice, PHT and VPA in combination displayed additivity of effect with 50μM PHT and 350μM VPA reducing SLD frequency by 44% and 24% individually (n = 19), and together reducing SLD frequency by 66% (n = 19). 20μM LTG reduced SLD frequency by 32% and 350μM VPA by 16% (n = 18). However, in combination there was a supra-linear suppression of ED’s of 64% (n = 18). In another independent set of experiments, similar results of drug combination responses were also found. In conclusion, a combination of conventional AEDs with different mechanisms of action, PHT and VPA, displayed linear additivity of effect on epileptiform activity. More intriguingly, a combination of LTG and VPA considered particularly efficacious clinically showed a supra-additive suppression of ED’s. This approach may be useful as an in vitro platform for assessing drug combination efficacy.
Collapse
|
15
|
Abstract
It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2-6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5-5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds.
Collapse
|
16
|
Sodium salicylate potentiates the GABAB-GIRK pathway to suppress rebound depolarization in neurons of the rat's medial geniculate body. Hear Res 2015; 332:104-112. [PMID: 26688177 DOI: 10.1016/j.heares.2015.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/25/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
Rebound depolarization (RD) is a voltage response to the offset from pre-hyperpolarization of neuronal membrane potential, which manifests a particular form of the postsynaptic membrane potential response to inhibitory presynaptic inputs. We previously demonstrated that sodium salicylate (NaSal), a tinnitus inducer, can drastically suppress the RD in neurons of rat medial geniculate body (MGB) (Su et al, 2012; PLoS ONE 7, e46969). The purpose of the present study was to investigate the underlying cellular mechanism by using whole-cell patch-clamp recordings in rat MGB slices. NaSal (1.4 mM) had no effects on the current mediated by T-type Ca(2+) channels, indicating that it does not target these channels to suppress the RD. Instead, NaSal was shown to hyperpolarize the resting membrane potential to suppress the RD. NaSal had no effects on the current mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, indicating that it does not target these channels to hyperpolarize the resting membrane potential. NaSal induced an outward leak current that could be abolished by CGP55845, a GABAB receptor blocker, or respectively by Ba(2+) and Tertiapin-Q, blockers for G-protein-gated inwardly rectifying potassium (GIRK) channels, indicating that NaSal potentiates the GABAB-GIRK pathway to hyperpolarize the resting membrane potential. Our study demonstrates that NaSal targets GABAB receptors to alter functional behaviors of MGB neurons, which may be implicated in NaSal-induced tinnitus.
Collapse
|
17
|
Zhang M, Kibler AB, Gonzales-Reyes LE, Durand DM. Neural activity propagation in an unfolded hippocampal preparation with a penetrating micro-electrode array. J Vis Exp 2015. [PMID: 25868081 DOI: 10.3791/52601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/31/2022] Open
Abstract
This protocol describes a method for preparing a new in vitro flat hippocampus preparation combined with a micro-machined array to map neural activity in the hippocampus. The transverse hippocampal slice preparation is the most common tissue preparation to study hippocampus electrophysiology. A longitudinal hippocampal slice was also developed in order to investigate longitudinal connections in the hippocampus. The intact mouse hippocampus can also be maintained in vitro because its thickness allows adequate oxygen diffusion. However, these three preparations do not provide direct access to neural propagation since some of the tissue is either missing or folded. The unfolded intact hippocampus provides both transverse and longitudinal connections in a flat configuration for direct access to the tissue to analyze the full extent of signal propagation in the hippocampus in vitro. In order to effectively monitor the neural activity from the cell layer, a custom made penetrating micro-electrode array (PMEA) was fabricated and applied to the unfolded hippocampus. The PMEA with 64 electrodes of 200 µm in height could record neural activity deep inside the mouse hippocampus. The unique combination of an unfolded hippocampal preparation and the PMEA provides a new in-vitro tool to study the speed and direction of propagation of neural activity in the two-dimensional CA1-CA3 regions of the hippocampus with a high signal to noise ratio.
Collapse
Affiliation(s)
- Mingming Zhang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University
| | - Andrew B Kibler
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University
| | - Luis E Gonzales-Reyes
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University;
| |
Collapse
|
18
|
Oukhatar F, Même S, Même W, Szeremeta F, Logothetis NK, Angelovski G, Tóth É. MRI sensing of neurotransmitters with a crown ether appended Gd(3+) complex. ACS Chem Neurosci 2015; 6:219-25. [PMID: 25496344 DOI: 10.1021/cn500289y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Molecular magnetic resonance imaging (MRI) approaches that detect biomarkers associated with neural activity would allow more direct observation of brain function than current functional MRI based on blood-oxygen-level-dependent contrast. Our objective was to create a synthetic molecular platform with appropriate recognition moieties for zwitterionic neurotransmitters that generate an MR signal change upon neurotransmitter binding. The gadolinium complex (GdL) we report offers ditopic binding for zwitterionic amino acid neurotransmitters, via interactions (i) between the positively charged and coordinatively unsaturated metal center and the carboxylate function and (ii) between a triazacrown ether and the amine group of the neurotransmitters. GdL discriminates zwitterionic neurotransmitters from monoamines. Neurotransmitter binding leads to a remarkable relaxivity change, related to a decrease in hydration number. GdL was successfully used to monitor neural activity in ex vivo mouse brain slices by MRI.
Collapse
Affiliation(s)
- Fatima Oukhatar
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
- Department
for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Sandra Même
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - William Même
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Frédéric Szeremeta
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| | - Nikos K. Logothetis
- Department
for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Department
of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Goran Angelovski
- MR
Neuroimaging Agents Group, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076 Tübingen, Germany
| | - Éva Tóth
- Centre
de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans, Cedex 2, France
| |
Collapse
|
19
|
Activation of extrasynaptic GABA(A) receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons. Neurosci Bull 2014; 30:866-76. [PMID: 25260800 DOI: 10.1007/s12264-014-1466-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Extrasynaptic GABA(A) receptors (GABA(A)Rs)-mediated tonic inhibition is reported to involve in the pathogenesis of epilepsy. In this study, we used cyclothiazide (CTZ)-induced in vitro brain slice seizure model to explore the effect of selective activation of extrasynaptic GABA(A)Rs by 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the CTZ-induced epileptiform activity in hippocampal neurons. Perfusion with CTZ dose-dependently induced multiple epileptiform peaks of evoked population spikes (PSs) in CA1 pyramidal neurons, and treatment with THIP (5 μmol/L) significantly reduced the multiple PS peaks induced by CTZ stimulation. Western blot showed that the δ-subunit of the GABA(A)R, an extrasynaptic specific GABA(A)R subunit, was also significantly down-regulated in the cell membrane 2 h after CTZ treatment. Our results suggest that the CTZ-induced epileptiform activity in hippocampal CA1 neurons is suppressed by the activation of extrasynaptic GABA(A)Rs, and further support the hypothesis that tonic inhibition mediated by extrasynaptic GABA(A)Rs plays a prominent role in seizure generation.
Collapse
|
20
|
Hsiao MC, Yu PN, Song D, Liu CY, Heck CN, Millett D, Berger TW. An in vitro seizure model from human hippocampal slices using multi-electrode arrays. J Neurosci Methods 2014; 244:154-63. [PMID: 25244953 DOI: 10.1016/j.jneumeth.2014.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 11/28/2022]
Abstract
Temporal lobe epilepsy is a neurological condition marked by seizures, typically accompanied by large amplitude synchronous electrophysiological discharges, affecting a variety of mental and physical functions. The neurobiological mechanisms responsible for the onset and termination of seizures are still unclear. While pharmacological therapies can suppress the symptoms of seizures, typically 30% of patients do not respond well to drug control. Unilateral temporal lobectomy, a procedure in which a substantial part of the hippocampal formation and surrounding tissue is removed, is a common surgical treatment for medically refractory epilepsy. In this study, we have developed an in vitro model of epilepsy using human hippocampal slices resected from patients suffering from intractable mesial temporal lobe epilepsy. We show that using a planar multi-electrode array system, spatio-temporal inter-ictal like activity can be consistently recorded in high-potassium (8 mM), low-magnesium (0.25 mM) artificial cerebral spinal fluid with 4-aminopyridine (100 μM) added. The induced epileptiform discharges can be recorded in different subregions of the hippocampus, including dentate, CA1 and subiculum. This new paradigm will allow the study of seizure generation in different subregions of hippocampus simultaneously, as well as propagation of seizure activity throughout the intrinsic circuitry of hippocampus. This experimental model also should provide insights into seizure control and prevention, while providing a platform to develop novel, anti-seizure therapeutics.
Collapse
Affiliation(s)
- Min-Chi Hsiao
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Pen-Ning Yu
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Dong Song
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Charles Y Liu
- Department of Neurological Surgery and Neurology, USC Keck School of Medicine, USC Center for Neurorestoration, Department of Biomedical Engineering, and Rancho Los Amigos National Rehabilitation Center, USA.
| | - Christianne N Heck
- Department of Neurology, USC Keck School of Medicine, USC Center for Neurorestoration, Los Angeles, CA 90033, USA.
| | - David Millett
- Department of Neurology, USC Keck School of Medicine, USC Center for Neurorestoration, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA.
| | - Theodore W Berger
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
21
|
Gong XW, Li JB, Lu QC, Liang PJ, Zhang PM. Effective connectivity of hippocampal neural network and its alteration in Mg2+-free epilepsy model. PLoS One 2014; 9:e92961. [PMID: 24658094 PMCID: PMC3962477 DOI: 10.1371/journal.pone.0092961] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures.
Collapse
Affiliation(s)
- Xin-Wei Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Bo Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qin-Chi Lu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
22
|
Propagation of epileptiform activity can be independent of synaptic transmission, gap junctions, or diffusion and is consistent with electrical field transmission. J Neurosci 2014; 34:1409-19. [PMID: 24453330 DOI: 10.1523/jneurosci.3877-13.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission.
Collapse
|
23
|
Effect of the entorhinal cortex on ictal discharges in low-Mg²⁺-induced epileptic hippocampal slice models. Neural Plast 2014; 2014:205912. [PMID: 24729906 PMCID: PMC3960561 DOI: 10.1155/2014/205912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2013] [Accepted: 01/30/2014] [Indexed: 11/27/2022] Open
Abstract
The hippocampus plays an important role in the genesis of mesial temporal lobe epilepsy, and the entorhinal cortex (EC) may affect the hippocampal network activity because of the heavy interconnection between them. However, the mechanism by which the EC affects the discharge patterns and the transmission mode of epileptiform discharges within the hippocampus needs further study. Here, multielectrode recording techniques were used to study the spatiotemporal characteristics of epileptiform discharges in adult mouse hippocampal slices and combined EC-hippocampal slices and determine whether and how the EC affects the hippocampal neuron discharge patterns. The results showed that low-Mg2+ artificial cerebrospinal fluid induced interictal discharges in hippocampal slices, whereas, in combined EC-hippocampal slices the discharge pattern was alternated between interictal and ictal discharges, and ictal discharges initiated in the EC and propagated to the hippocampus. The pharmacological effect of the antiepileptic drug valproate (VPA) was tested. VPA reversibly suppressed the frequency of interictal discharges but did not change the initiation site and propagation speed, and it completely blocked ictal discharges. Our results suggested that EC was necessary for the hippocampal ictal discharges, and ictal discharges were more sensitive than interictal discharges in response to VPA.
Collapse
|
24
|
Zhang J, Peng H, Veasey SC, Ma J, Wang GF, Wang KW. Blockade of Na+/H+ exchanger type 3 causes intracellular acidification and hyperexcitability via inhibition of pH-sensitive K+ channels in chemosensitive respiratory neurons of the dorsal vagal nucleus in rats. Neurosci Bull 2013; 30:43-52. [PMID: 23990222 DOI: 10.1007/s12264-013-1373-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2013] [Accepted: 03/12/2013] [Indexed: 10/26/2022] Open
Abstract
Extracellular pH (pHe) and intracellular pH (pHi) are important factors for the excitability of chemosensitive central respiratory neurons that play an important role in respiration and obstructive sleep apnea. It has been proposed that inhibition of central Na(+)/H(+) exchanger 3 (NHE-3), a key pHi regulator in the brainstem, decreases the pHi, leading to membrane depolarization for the maintenance of respiration. However, how intracellular pH affects the neuronal excitability of respiratory neurons remains largely unknown. In this study, we showed that NHE-3 mRNA is widely distributed in respiration-related neurons of the rat brainstem, including the dorsal vagal nucleus (DVN). Whole-cell patch clamp recordings from DVN neurons in brain slices revealed that the standing outward current (Iso) through pH-sensitive K(+) channels was inhibited in the presence of the specific NHE-3 inhibitor AVE0657 that decreased the pHi. Exposure of DVN neurons to an acidified pHe and AVE0657 (5 μmol/L) resulted in a stronger effect on firing rate and Iso than acidified pHe alone. Taken together, our results showed that intracellular acidification by blocking NHE-3 results in inhibition of a pH-sensitive K(+) current, leading to synergistic excitation of chemosensitive DVN neurons for the regulation of respiration.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | | | | | | | | | | |
Collapse
|