Liu B, Lv LL, Liu P, Xu YY, Guo M, Liu J, Shi JS. Proteomic analysis of anti-aging effects of Dendrobium nobile Lindl. alkaloids in aging-accelerated SAMP8 mice.
Exp Gerontol 2023;
177:112198. [PMID:
37150330 DOI:
10.1016/j.exger.2023.112198]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Senescence-accelerated mouse prone 8 (SAMP8) mice exhibit cognitive defects and neuron loss with aging, and were used to study anti-aging effects of Dendrobium nobile alkaloids (DNLA). DNLA (20 and 40 mg/kg) were orally administered to SAMP8 mice from 6 to 10 months of age. At 10-month of age, behavioral tests via Y-maze and Open-field and neuron damage via Nissl staining were evaluated. Protein was extracted and subjected to phosphorylated proteomic analysis followed by bioinformatic analysis. The cognitive deficits and neuron loss in hippocampus and cortex of aged SAMP8 mice were improved by DNLA. Hippocampal proteomic analysis revealed 196 differentially expressed protein/genes in SAMP8 compared to age-matched senescence-accelerated resistant SAMR1 mice. Gene Oncology enriched the tubulin binding, microtubule binding, and other activities. Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed endocytosis, mRNA surveillance, tight junction, protein processing in endoplasmic reticulum, aldosterone synthesis and secretion, and glucagon signaling pathway changes. Upregulated protein/genes in the hippocampus of SAMP8 mice, such as Lmtk3, Usp10, Dzip1, Csnk2b, and Rtn1, were attenuated by DNLA; whereas downregulated protein/genes, such as Kctd16, Psd3, Bsn, Atxn2l, and Kif1a, were rescued by DNLA. The aberrant protein/gene expressions of SAMP8 mice were correlated with transcriptome changes of Alzheimer's disease in the Gene Expression Omnibus (GEO) database, and the scores were attenuated by DNLA. Thus, DNLA improved cognitive dysfunction and ameliorated neuronal injury in aged SAMP8 mice, and attenuated aberrant protein/gene expressions.
Collapse