1
|
Jang H, Yim SS. Toward DNA-Based Recording of Biological Processes. Int J Mol Sci 2024; 25:9233. [PMID: 39273181 PMCID: PMC11394691 DOI: 10.3390/ijms25179233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Exploiting the inherent compatibility of DNA-based data storage with living cells, various cellular recording approaches have been developed for recording and retrieving biologically relevant signals in otherwise inaccessible locations, such as inside the body. This review provides an overview of the current state of engineered cellular memory systems, highlighting their design principles, advantages, and limitations. We examine various technologies, including CRISPR-Cas systems, recombinases, retrons, and DNA methylation, that enable these recording systems. Additionally, we discuss potential strategies for improving recording accuracy, scalability, and durability to address current limitations in the field. This emerging modality of biological measurement will be key to gaining novel insights into diverse biological processes and fostering the development of various biotechnological applications, from environmental sensing to disease monitoring and beyond.
Collapse
Affiliation(s)
- Hyeri Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Sun Yim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Aalam SMM, Nguyen LV, Ritting ML, Kannan N. Clonal tracking in cancer and metastasis. Cancer Metastasis Rev 2024; 43:639-656. [PMID: 37910295 PMCID: PMC11500829 DOI: 10.1007/s10555-023-10149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The eradication of many cancers has proven challenging due to the presence of functionally and genetically heterogeneous clones maintained by rare cancer stem cells (CSCs), which contribute to disease progression, treatment refractoriness, and late relapse. The characterization of functional CSC activity has necessitated the development of modern clonal tracking strategies. This review describes viral-based and CRISPR-Cas9-based cellular barcoding, lineage tracing, and imaging-based approaches. DNA-based cellular barcoding technology is emerging as a powerful and robust strategy that has been widely applied to in vitro and in vivo model systems, including patient-derived xenograft models. This review also highlights the potential of these methods for use in the clinical and drug discovery contexts and discusses the important insights gained from such approaches.
Collapse
Affiliation(s)
| | - Long Viet Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Megan L Ritting
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Xie L, Liu H, You Z, Wang L, Li Y, Zhang X, Ji X, He H, Yuan T, Zheng W, Wu Z, Xiong M, Wei W, Chen Y. Comprehensive spatiotemporal mapping of single-cell lineages in developing mouse brain by CRISPR-based barcoding. Nat Methods 2023; 20:1244-1255. [PMID: 37460718 DOI: 10.1038/s41592-023-01947-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/06/2023] [Indexed: 08/09/2023]
Abstract
A fundamental interest in developmental neuroscience lies in the ability to map the complete single-cell lineages within the brain. To this end, we developed a CRISPR editing-based lineage-specific tracing (CREST) method for clonal tracing in Cre mice. We then used two complementary strategies based on CREST to map single-cell lineages in developing mouse ventral midbrain (vMB). By applying snapshotting CREST (snapCREST), we constructed a spatiotemporal lineage landscape of developing vMB and identified six progenitor archetypes that could represent the principal clonal fates of individual vMB progenitors and three distinct clonal lineages in the floor plate that specified glutamatergic, dopaminergic or both neurons. We further created pandaCREST (progenitor and derivative associating CREST) to associate the transcriptomes of progenitor cells in vivo with their differentiation potentials. We identified multiple origins of dopaminergic neurons and demonstrated that a transcriptome-defined progenitor type comprises heterogeneous progenitors, each with distinct clonal fates and molecular signatures. Therefore, the CREST method and strategies allow comprehensive single-cell lineage analysis that could offer new insights into the molecular programs underlying neural specification.
Collapse
Affiliation(s)
- Lianshun Xie
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hengxin Liu
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwen You
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luyue Wang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yiwen Li
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshan Ji
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hui He
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tingli Yuan
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenping Zheng
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyan Wu
- UniXell Biotechnology, Shanghai, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology-Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
| | - Yuejun Chen
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
4
|
Watson CJ. How should we define mammary stem cells? Trends Cell Biol 2021; 31:621-627. [PMID: 33902986 DOI: 10.1016/j.tcb.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023]
Abstract
Mammary stem cells (MaSCs) have been defined by cell surface marker expression and their ability to repopulate a cleared fat pad, a capacity now known to result from reprogramming upon transplantation. Furthermore, lineage-tracing studies have provoked controversy as to whether MaSCs are unipotent or bi/multipotent. Various innovative experimental approaches, including single-cell RNA sequencing (scRNA-Seq), epigenetic analyses, deep tissue and live imaging, and advanced mouse models, have provided new and unexpected insights into stem and progenitor cells; thus, it is now timely to reappraise our concept of the MaSC hierarchy. Here, I highlight misconceptions, suggest definitions of stem and progenitor cells, and propose a way forward in our search for an understanding of MaSCs.
Collapse
Affiliation(s)
- Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
5
|
Yeldell SB, Yang L, Lee J, Eberwine JH, Dmochowski IJ. Oligonucleotide Probe for Transcriptome in Vivo Analysis (TIVA) of Single Neurons with Minimal Background. ACS Chem Biol 2020; 15:2714-2721. [PMID: 32902259 DOI: 10.1021/acschembio.0c00499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Messenger RNA (mRNA) isolated from single cells can generate powerful biological insights, including the discovery of new cell types with unique functions as well as markers potentially predicting a cell's response to various therapeutic agents. We previously introduced an oligonucleotide-based technique for site-selective, photoinduced biotinylation and capture of mRNA within a living cell called transcriptome in vivo analysis (TIVA). Successful application of the TIVA technique hinges upon its oligonucleotide probe remaining completely inert (or "caged") to mRNA unless photoactivated. To improve the reliability of TIVA probe caging in diverse and challenging biological conditions, we applied a rational design process involving iterative modifications to the oligonucleotide construct. In this work, we discuss these design motivations and present an optimized probe with minimal background binding to mRNA prior to photolysis. We assess its caging performance through multiple in vitro assays including FRET analysis, native gel comigration, and pull down with model mRNA transcripts. Finally, we demonstrate that this improved probe can also isolate mRNA from single living neurons in brain tissue slices with excellent caging control.
Collapse
Affiliation(s)
- Sean B. Yeldell
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Linlin Yang
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jaehee Lee
- Department of Pharmacology, University of Pennsylvania, 38 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104-6084, United States
| | - James H. Eberwine
- Department of Pharmacology, University of Pennsylvania, 38 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104-6084, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
6
|
Cai Y, Yang Z. Adult Neural Stem Cells: Constant Extension from Embryonic Ancestors. Neurosci Bull 2019; 35:1120-1122. [PMID: 31119648 DOI: 10.1007/s12264-019-00396-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yuqun Cai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Ministry of Education Frontier Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Ministry of Education Frontier Center for Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|