1
|
Sui AR, Piao H, Xiong ST, Zhang P, Guo SY, Kong Y, Gao CQ, Wang ZX, Yang J, Ge BY, Supratik K, Yang JY, Li S. Scorpion venom heat-resistant synthesized peptide ameliorates epileptic seizures and imparts neuroprotection in rats mediated by NMDA receptors. Eur J Pharmacol 2024; 978:176704. [PMID: 38830458 DOI: 10.1016/j.ejphar.2024.176704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Hua Piao
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Si-Ting Xiong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Peng Zhang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Qian Gao
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xue Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jun Yang
- Department of Child Health, Yantaishan Hospital, Yantai, 264008, China
| | - Bi-Ying Ge
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Kundu Supratik
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Liu R, Cao S, Cai Y, Zhou M, Gou X, Huang Y. Brain and serum metabolomic studies reveal therapeutic effects of san hua decoction in rats with ischemic stroke. Front Endocrinol (Lausanne) 2023; 14:1289558. [PMID: 38098862 PMCID: PMC10720749 DOI: 10.3389/fendo.2023.1289558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
San Hua Decoction (SHD) is a traditional four-herbal formula that has long been used to treat stroke. Our study used a traditional pharmacodynamic approach combined with systematic and untargeted metabolomics analyses to further investigate the therapeutic effects and potential mechanisms of SHD on ischemic stroke (IS). Male Sprague-Dawley rats were randomly divided into control, sham-operated, middle cerebral artery occlusion reperfusion (MCAO/R) model and SHD groups. The SHD group was provided with SHD (7.2 g/kg, i.g.) and the other three groups were provided with equal amounts of purified water once a day in the morning for 10 consecutive days. Our results showed that cerebral infarct volumes were reduced in the SHD group compared with the model group. Besides, SHD enhanced the activity of SOD and decreased MDA level in MCAO/R rats. Meanwhile, SHD could ameliorate pathological abnormalities by reducing neuronal damage, improving the structure of damaged neurons and reducing inflammatory cell infiltration. Metabolomic analysis of brain and serum samples with GC-MS techniques revealed 55 differential metabolites between the sham and model groups. Among them, the levels of 12 metabolites were restored after treatment with SHD. Metabolic pathway analysis showed that SHD improved the levels of 12 metabolites related to amino acid metabolism and carbohydrate metabolism, 9 of which were significantly associated with disease. SHD attenuated brain inflammation after ischemia-reperfusion. The mechanisms underlying the therapeutic effects of SHD in MCAO/R rats are related to amino acid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Ruisi Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengxuan Cao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, China
| | - Yufeng Cai
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Huang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, China
| |
Collapse
|
3
|
Huang L, Xu J, Duan K, Bao T, Cheng Y, Zhang H, Zhang Y, Lin Y, Li F. Scorpion venom heat-resistant peptide alleviates mitochondrial dynamics imbalance induced by PM 2.5 exposure by downregulating the PGC-1α/SIRT3 signaling pathway. Toxicol Res (Camb) 2023; 12:756-764. [PMID: 37915494 PMCID: PMC10615811 DOI: 10.1093/toxres/tfad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 11/03/2023] Open
Abstract
Background Epidemiological inquiry reveals that neuroinflammation and mitochondrial dysfunction caused by PM2.5 exposure are associated with Alzheimer's disease. Nevertheless, the molecular mechanisms of mitochondrial dynamics and neuroinflammation induced by PM2.5 exposure remain elusive. In this study, our objective was to explore the impact of PM2.5 on mitochondrial dynamics and neuroinflammation, while also examining the reparative potential of scorpion venom heat-resistant synthetic peptide (SVHRSP). Methods Western blot and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were employed to ascertain the protein and gene levels of IL-1β, IL-6, and TNF-α in BV2 cells. The concentration of IL-6 in the supernatant of the BV2 cell culture was measured by enzyme-linked immunosorbent assay. For the assessment of mitochondrial homeostasis, western blot, RT-qPCR, and cellular immunohistochemistry methods were utilized to investigate the protein and gene levels of DRP1 and MFN-2 in HT22 cells. In the context of signal pathway analyses, western blot, RT-qPCR, and immunofluorescence techniques were employed to detect the protein and gene expressions of PGC-1α and SIRT3 in HT22 cells, respectively. Following the transfection with siPGC-1αRNA, downstream proteins of PGC-1α/SIRT3 pathway in HT22 cells were investigated by Western blot and RT-qPCR. Results The experimental findings demonstrated that exposure to PM2.5 exacerbated neuroinflammation, resulting in elevated levels of IL-1β, IL-6, and TNF-α. Furthermore, it perturbed mitochondrial dynamics, as evidenced by increased DRP1 expression and decreased MFN-2 expression. Additionally, dysfunction was observed in the PGC-1α/SIRT3 signal pathway. However, intervention with SVHRSP ameliorated the cellular damage induced by PM2.5 exposure. Conclusions SVHRSP alleviated neuroinflammation and mitochondrial dynamics imbalance induced by PM2.5 exposure by downregulating the PGC-1α/SIRT3 signaling pathway.
Collapse
Affiliation(s)
- Lanyi Huang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Kaiqian Duan
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Tuya Bao
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yu Cheng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Haimin Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yong Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yingwei Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
4
|
Zhang Y, Li S, Hou L, Wu M, Liu J, Wang R, Wang Q, Zhao J. NLRP3 mediates the neuroprotective effects of SVHRSP derived from scorpion venom in rotenone-induced experimental Parkinson's disease model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116497. [PMID: 37072089 DOI: 10.1016/j.jep.2023.116497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, scorpion is used to treat diseases with symptoms such as trembling, convulsion and dementia. Our laboratory employs patented technology to extract and purify the active single component from scorpion venom. We then utilize mass spectrometry to determine the amino acid sequence of the polypeptide and synthesize it artificially to acquire the polypeptide with a purity of 99.3%, named SVHRSP (Scorpion Venom Heat-Resistant Peptide). SVHRSP has been demonstrated to display potent neuroprotective efficacy in Parkinson's disease. AIM OF THE STUDY To explore the molecular mechanisms and potential molecular targets of SVHRSP-afforded neuroprotection in PD mouse models, as well as to investigate the role of NLRP3 in SVHRSP-mediated neuroprotection. MATERIALS AND METHODS The PD mouse model was induced by rotenone and the neuroprotective role of SVHRSP on the PD mouse model was measured using the gait test, rotarod test, the number of dopaminergic neurons, and the activation of microglia. RNA sequencing and GSEA analysis were performed to find the differentially biological pathways regulated by SVHRSP. Primary mid-brain neuron-glial cultures and NLRP3-/- mice were applied to verify the role of NLRP3 by using qRT-PCR, western blotting, enzyme-linked immunosorbent assay (ELISA) and immunostaining. RESULTS SVHRSP-afforded dopaminergic neuroprotection was accompanied with inhibition of microglia-mediated neuroinflammatory pathways. Importantly, depletion of microglia markedly reduced the neuroprotective efficacy of SVHRSP against rotenone-induced dopaminergic neurotoxicity in vitro. SVHRSP inhibited microglial NOD-like receptor pathway, mRNA expression and protein level of NLRP3 in rotenone PD mice. SVHRSP also reduced rotenone-induced caspse-1 activation and IL-1β maturation, indicating that SVHRSP mitigated activation of NLRP3 inflammasome. Moreover, inactivation of NLRP3 inflammasome by MCC950 or genetic deletion of NLRP3 almost abolished SVHRSP-afforded anti-inflammatory, neuroprotective effects and improvement of motor performance in response to rotenone. CONCLUSIONS NLRP3 mediated the neuroprotective effects of SVHRSP in rotenone-induced experimental PD model, providing additional evidence for the mechanisms of SVHRSP-afforded anti-inflammatory and neuroprotective effects in PD.
Collapse
Affiliation(s)
- Yu Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liyan Hou
- Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Mingyang Wu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Jianing Liu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ruonan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
5
|
Wang L, Sun F, Hu J, Zuo W, Zheng Y, Wu Y, Kwok HF, Cao Z. The tick saliva peptide HIDfsin2 promotes the tick-borne virus SFTSV replication in vitro by enhancing p38 signal pathway. Arch Toxicol 2023; 97:1783-1794. [PMID: 37148319 PMCID: PMC10163292 DOI: 10.1007/s00204-023-03515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Pathogens co-evolved with ticks to facilitate blood collection and pathogen transmission. Although tick saliva was recently found to be rich in bioactive peptides, it is still elusive which saliva peptide promotes virus transmission and which pathways are invovled. Here, we used a saliva peptide HIDfsin2 and a severe fever with thrombocytopenia syndrome virus (SFTSV) both carried by the tick Haemaphysalis longicornis to elucidate the relationship between tick saliva components and tick-borne viruses. HIDfsin2 was found to promote the replication of SFTSV in a dose-dependent manner in vitro. HIDfsin2 was further revealed to MKK3/6-dependently magnify the activation of p38 MAPK. The overexpression, knockdown and phosphorylation site mutation of p38α indicated that p38 MAPK activation facilitated SFTSV infection in A549 cells. Moreover, the blockade of p38 MAPK activation significantly suppressed SFTSV replication. Differently, HIDfsin2 or pharmacological inhibition of p38 MAPK activation had no effect on a mosquito-borne Zika virus (ZIKV). All these results showed that HIDfsin2 specifically promoted SFTSV replication through the MKK3/6-dependent enhancement of p38 MAPK activation. Our study provides a new perspective on the transmission of tick-borne viruses under natural conditions, and supports that the blockade of p38 MAPK activation can be a promising strategy against the mortal tick-borne virus SFTSV.
Collapse
Affiliation(s)
- Luyao Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang Sun
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Jing Hu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weimin Zuo
- Department of Biomedical Sciences, Faculty of Health Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Yi Zheng
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, China
| | - Yingliang Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Zhijian Cao
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Zhu D, Huang Y, Guo S, Li N, Yang X, Sui A, Wu Q, Zhang Y, Kong Y, Li Q, Zhang T, Zheng W, Li A, Yu J, Ma T, Li S. AQP4 Aggravates Cognitive Impairment in Sepsis-Associated Encephalopathy through Inhibiting Na v 1.6-Mediated Astrocyte Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205862. [PMID: 36922751 PMCID: PMC10190498 DOI: 10.1002/advs.202205862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Indexed: 05/18/2023]
Abstract
The pathology of sepsis-associated encephalopathy (SAE) is related to astrocyte-inflammation associated with aquaporin-4 (AQP4). The aim here is to investigate the effects of AQP4 associated with SAE and reveal its underlying mechanism causing cognitive impairment. The in vivo experimental results reveal that AQP4 in peripheral blood of patients with SAE is up-regulated, also the cortical and hippocampal tissue of cecal ligation and perforation (CLP) mouse brain has significant rise in AQP4. Furthermore, the data suggest that AQP4 deletion could attenuate learning and memory impairment, attributing to activation of astrocytic autophagy, inactivation of astrocyte and downregulate the expression of proinflammatory cytokines induced by CLP or lipopolysaccharide (LPS). Furthermore, the activation effect of AQP4 knockout on CLP or LPS-induced PPAR-γ inhibiting in astrocyte is related to intracellular Ca2+ level and sodium channel activity. Learning and memory impairment in SAE mouse model are attenuated by AQP4 knockout through activating autophagy, inhibiting neuroinflammation leading to neuroprotection via down-regulation of Nav 1.6 channels in the astrocytes. This results in the reduction of Ca2+ accumulation in the cell cytosol furthermore activating the inhibition of PPAR-γ signal transduction pathway in astrocytes.
Collapse
Affiliation(s)
- Dan‐Dan Zhu
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Yue‐Lin Huang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Song‐Yu Guo
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Na Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Xue‐Wei Yang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Ao‐Ran Sui
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Qiong Wu
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Yue Zhang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Yue Kong
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Qi‐Fa Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Ting Zhang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Wen‐Fei Zheng
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Ai‐Ping Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Jian Yu
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Tong‐Hui Ma
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Shao Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| |
Collapse
|
7
|
Heidarli E, Vatanpour H, Nasri Nasrabadi N, Soltani M, Tahmasebi S, Faizi M. The Effects of the Fraction Isolated from Iranian Buthotus shach Scorpion Venom on Synaptic Plasticity, Learning, Memory, and Seizure Susceptibility. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e138273. [PMID: 38444716 PMCID: PMC10912865 DOI: 10.5812/ijpr-138273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 09/03/2023] [Indexed: 03/07/2024]
Abstract
Epilepsy, as a neurological disease, can be defined as frequent seizure attacks. Further, it affects many other aspects of patients' mental activities, such as learning and memory. Scorpion venoms have gained notice as compounds with potential antiepileptic properties. Among them, Buthotus schach (BS) is one of the Iranian scorpions studied by Aboutorabi et al., who fractionated, characterized, and tested this compound using electrophysiological techniques in brain slices (patch-clamp recording). In the present study, the fraction obtained from gel electrophoresis was investigated through behavioral and electrophysiological assays. At first, ventricular cannulation was performed in rats, and then the active fraction (i.e., F3), carbamazepine, and the vehicle were microinjected into the brain before seizure induction by the subcutaneous (SC) injection of pentylenetetrazol (PTZ). Seizure behaviors were scaled according to Racine stages. Memory and learning were evaluated using the Y-maze and passive avoidance tests. Other groups entered evoked field potential recording after microinjection and seizure induction. Population spike (PS) and field excitatory postsynaptic potential (fEPSP) were measured. The F3 fraction could prevent the fifth stage and postpone the third stage of seizure compared to the control (carbamazepine) group. There was no significant improvement in memory and learning in the group treated with the F3 fraction. Also, PS amplitude and fEPSP slope increased significantly, and long-term potentiation was successfully formed after the high-frequency stimulation of the performant pathway. Our results support the antiepileptic effects of the F3 fraction of BS venom, evidenced by behavioral and electrophysiological studies. However, the effects of this fraction on memory and learning were not in the same direction, suggesting the involvement of two different pathways.
Collapse
Affiliation(s)
- Elmira Heidarli
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vatanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Nasri Nasrabadi
- Pharmaceutical Sciences Research Centre, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maha Soltani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Tahmasebi
- Department of Cognitive Science, Science and Research Branch, Islamic Azad University Tehran, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Qiao YN, Lin SZ, Duan XZ, Yang MH, Zhang XF, Li JJ, Kang SN, Wang YT, Zhang Y, Feng XC. A randomized, double-blind, placebo-controlled multicenter clinical trial of Xiehuang Jiejing granule in the treatment of cough variant asthma in children. Medicine (Baltimore) 2022; 101:e31636. [PMID: 36401471 PMCID: PMC9678501 DOI: 10.1097/md.0000000000031636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cough variant asthma (CVA), also called concealed asthma or allergic asthma, is the most common cause of chronic cough in children. The disorder is mainly characterized by a nonproductive dry cough associated with a high recurrence rate that is conventionally treated with antibiotics, anti-inflammatory medications, cough suppressants, or expectorants. For millennia, Chinese herbal medicine (CHM) has been used widely in China to treat pediatric CVA cases, although high-quality evidence of CHM efficacy is lacking. In this study, the effectiveness and safety of Xiehuangjiejing (XHJJ) granule will be evaluated when used alone to treat children with CVA. METHODS AND ANALYSIS A randomized, double-blind, parallel, placebo-controlled multicenter trial will be conducted over the course of 2 weeks. A total of 180 CVA patients of ages between 4 and 7 years old will be randomly assigned to the experimental group (XHJJ granules, 4.5 g administered 3 times daily) or control group (matched placebo, 4.5 g administered 3 times daily) in a 2:1 ratio based on subject number per group, respectively. The trial will consist of a 7-day medical interventional stage and a 7-day follow-up stage. On day 7 of the follow-up stage, an evaluation of all subjects will be carried out to assess cough symptom score as the primary outcome and several secondary outcomes, including TCM (traditional Chinese medicine) syndrome score, lung function, and dosage of salbutamol aerosol inhaler therapy. Safety assessments will also be evaluated during the trial. DISCUSSION The aim of this study was to examine the effectiveness and safety of Xiehuangjiejing (XHJJ) granule using a trial protocol designed to yield high-quality, statistically robust results for use in evaluating CHM as a treatment for CVA in children.
Collapse
Affiliation(s)
- Yi-Na Qiao
- Changchun University of Chinese Medicine, Changchun, China
| | - Shuang-Zhu Lin
- Department of Respiratory Medicine, Children’s Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xiao-Zheng Duan
- Department of Respiratory Medicine, Children’s Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ming-Hang Yang
- Changchun University of Chinese Medicine, Changchun, China
| | | | - Jing-Jing Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Sai-Nan Kang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yu-Ting Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Ying Zhang
- Center for Evidence-based Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Chun Feng
- Department of Respiratory Medicine, Children’s Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Guo SY, Guan RX, Chi XD, Yue-Zhang, Sui AR, Zhao W, Kundu S, Yang JY, Zhao J, Li S. Scorpion venom heat-resistant synthetic peptide protects dopamine neurons against 6-hydroxydopamine neurotoxicity in C. elegans. Brain Res Bull 2022; 190:195-203. [DOI: 10.1016/j.brainresbull.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022]
|
10
|
Wang YZ, Guo SY, Kong RL, Sui AR, Wang ZH, Guan RX, Supratik K, Zhao J, Li S. Scorpion Venom Heat–Resistant Synthesized Peptide Increases Stress Resistance and Extends the Lifespan of Caenorhabditis elegans via the Insulin/IGF-1-Like Signal Pathway. Front Pharmacol 2022; 13:919269. [PMID: 35910355 PMCID: PMC9330001 DOI: 10.3389/fphar.2022.919269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Improving healthy life expectancy by targeting aging-related pathological changes has been the spotlight of geroscience. Scorpions have been used in traditional medicine in Asia and Africa for a long time. We have isolated heat-resistant peptides from scorpion venom of Buthusmartensii Karsch (SVHRP) and found that SVHRP can attenuate microglia activation and protect Caenorhabditis elegans (C. elegans) against β-amyloid toxicity. Based on the amino acid sequence of these peptides, scorpion venom heat–resistant synthesized peptide (SVHRSP) was prepared using polypeptide synthesis technology. In the present study, we used C. elegans as a model organism to assess the longevity-related effects and underlying molecular mechanisms of SVHRSP in vivo. The results showed that SVHRSP could prolong the lifespan of worms and significantly improve the age-related physiological functions of worms. SVHRSP increases the survival rate of larvae under oxidative and heat stress and decreases the level of reactive oxygen species and fat accumulation in vivo. Using gene-specific mutation of C. elegans, we found that SVHRSP-mediated prolongation of life depends on Daf-2, Daf-16, Skn-1, and Hsf-1 genes. These results indicate that the antiaging mechanism of SVHRSP in nematodes might be mediated by the insulin/insulin-like growth factor-1 signaling pathway. Meanwhile, SVHRSP could also up-regulate the expression of stress-inducing genes Hsp-16.2, Sod-3, Gei-7, and Ctl-1 associated with aging. In general, our study may have important implications for SVHRSP to promote healthy aging and provide strategies for research and development of drugs to treat age-related diseases.
Collapse
Affiliation(s)
- Ying-Zi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rui-Li Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Zhen-Hua Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Rong-Xiao Guan
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Kundu Supratik
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- *Correspondence: Jie Zhao, ; Shao Li,
| |
Collapse
|
11
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Ma H, Hu ZC, Long Y, Cheng LC, Zhao CY, Shao MK. Tanshinone IIA Microemulsion Protects against Cerebral Ischemia Reperfusion Injury via Regulating H3K18ac and H4K8ac In Vivo and In Vitro. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1845-1868. [DOI: 10.1142/s0192415x22500781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tanshinone IIA (TanIIA) has neuroprotective effects against cerebral ischemia reperfusion injury (CIRI), but its clinical application is limited due to poor water solubility and robust first pass elimination property. In this study, we developed microemulsion loaded with TanIIA (TanIIA ME) to break through these limitations, and explored the neuroprotective effect of TanIIA ME against CIRI and the epigenetic regulation mechanism of this neuroprotection. In vivo, middle cerebral artery occlusion (MCAO) models were treated with TanIIA ME and TanIIA solution or sodium valproate as a control. The effect of TanIIA ME on HDAC activity was determined by ELISA assay. In addition, we used primary hippocampal neurons to establish oxygen-glucose deprivation and reoxygenation (OGD/R) models. Lactate dehydrogenase (LDH) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed to investigate the neuroprotective efficacy of TanIIA ME. Subsequently, the expression of H3K18ac, H4K8ac, NMDAR1, caspase-3, and MAP-2 were investigated in MCAO or OGD/R models treated with TanIIA ME, TanIIA solution or sodium valproate. In vivo experimental results indicated that TanIIA ME significantly reduced neurological scores, infarction volume, and HDAC activity compared with TanIIA solution and MCAO group, accompanied by upregulation of H3K18ac, H4K8ac, and MAP-2 expression and downregulation of NMDAR1 and caspase-3 expression. Additionally, in OGD/R models, the results demonstrated that TanIIA ME treatment had a better neuroprotective effect along with increased H3K18ac, H4K8ac, and MAP-2 expression and decreased NMDAR1 and caspase-3 expression, compared with the other treatments except sodium valproate. Overall, TanIIA ME treatment exhibited superior efficacy in protecting against CIRI through mechanisms that might involve the inhibition of NMDAR1 and caspase-3 expression and the enhancement of MAP-2 expression by regulating histone H3K18 and H4K8 acetylation. Thus, TanIIA ME could be potentially used to develop a promising drug for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Zeng-Chun Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Yu Long
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Li-Chun Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Chen-Yang Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Ming-Kun Shao
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| |
Collapse
|
13
|
Wu XF, Li C, Yang G, Wang YZ, Peng Y, Zhu DD, Sui AR, Wu Q, Li QF, Wang B, Li N, Zhang Y, Ge BY, Zhao J, Li S. Scorpion Venom Heat-Resistant Peptide Attenuates Microglia Activation and Neuroinflammation. Front Pharmacol 2021; 12:704715. [PMID: 34675802 PMCID: PMC8524240 DOI: 10.3389/fphar.2021.704715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Intervention of neuroinflammation in central nervous system (CNS) represents a potential therapeutic strategy for a host of brain disorders. The scorpion Buthus martensii Karsch (BmK) and its venom have long been used in the Orient to treat inflammation-related diseases such as rhumatoid arthritis and chronic pain. Scorpion venom heat-resistant peptide (SVHRP), a component from BmK venom, has been shown to reduce seizure susceptibility in a rat epileptic model and protect against cerebral ischemia-reperfusion injury. As neuroinflammation has been implicated in chronic neuronal hyperexcitability, epileptogenesis and cerebral ischemia-reperfusion injury, the present study aimed to investigate whether SVHRP has anti-inflammatory property in brain. Methods: An animal model of neuroinflammation induced by lipopolysacchride (LPS) injection was employed to investigate the effect of SVHRP (125 µg/kg, intraperitoneal injection) on inflammagen-induced expression of pro-inflammatory factors and microglia activation. The effect of SVHRP (2–20 μg/ml) on neuroinflammation was further investigated in primary brain cell cultures containing microglia as well as the immortalized BV2 microglia culture stimulated with LPS. Real-time quantitative PCR were used to measure mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in hippocampus of animals. Protein levels of TNF-α, iNOS, P65 subunit of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) were examined by ELISA or western blot. Microglia morphology in animal hippocampus or cell cultures and cellular distribution of p65 were shown by immunostaining. Results: Morphological study demonstrated that activation of microglia, the main component that mediates the neuroinflammatory process, was inhibited by SVHRP in both LPS mouse and cellular model. Our results also showed dramatic increases in the expression of iNOS and TNF-α in hippocampus of LPS-injected mice, which was significantly attenuated by SVHRP treatment. In vitro results showed that SVHRP attenuated LPS-elicited expression of iNOS and TNF-α in different cultures without cell toxicity, which might be attributed to suppression of NF-κB and MAPK pathways by SVHRP. Conclusion: Our study demonstrates that SVHRP is able to inhibit neuroinflammation and microglia activation, which may underlie the therapeutic effects of BmK-derived materials, suggesting that BmK venom could be a potential source for CNS drug development.
Collapse
Affiliation(s)
- Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Chun Li
- Reproductive Medicine Centre, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Guang Yang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Zi Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yan Peng
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Dan-Dan Zhu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ao-Ran Sui
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qi-Fa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bi-Ying Ge
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Yin J, Chen H, Li S, Zhang S, Guo X. Blockage of miR-485-5p on Cortical Neuronal Apoptosis Induced by Oxygen and Glucose Deprivation/Reoxygenation Through Inactivating MAPK Pathway. Neuromolecular Med 2021; 23:256-266. [PMID: 32719988 DOI: 10.1007/s12017-020-08605-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
This study is designed to explore the role of miR-485-5p in hypoxia/reoxygenation-induced neuronal injury in primary rat cortical neurons. Hypoxia/reoxygenation model was established through oxygen and glucose deprivation/reoxygenation (OGD/R). RN-c cells were transfected with miR-485-5p mimics, miR-485-5p inhibitors, si-SOX6, pCNDA3.1-SOX6 or miR-485-5p + pCDNA3.1-SOX6, in which cell viability, apoptosis, lactate dehydrogenase (LDH) release rate were assessed. Western blot detected the protein expressions of apoptotic-related proteins (caspase3, Bcl-2, Bax) and the phosphorylated level of ERK1/2. The potential binding sites between miR-485-5p and SOX6 were predicted by STARBASE and identified using dual luciferase reporter gene assay. OGD/R-treated RN-c cell presented increases in apoptosis and LDH release rate as well as a decrease in cell viability. miR-485-5p was downregulated while SOX6 was upregulated in OGD/R-treated RN-c cells. Overexpression of miR-485-5p or SOX6 knockdown rescued cell viability and Bcl-2 expression, while attenuated apoptosis, LDH release rate, expression of SOX6 and the phosphorylated level of ERK1/2. Consistently, miR-485-5p inhibition led to the reverse pattern. Co-transfection of miR-485-5p and SOX6 reversed the protective effect of miR-485-5p on OGD/R-induced neuronal apoptosis. miR-485-5p can directly target SOX6. Together, miR-485-5p inhibited SOX6 to alleviate OGD/R-induced apoptosis. Collectively, miR-485-5p protects primary cortical neurons against hypoxia injury through downregulating SOX6 and inhibiting MAPK pathway.
Collapse
Affiliation(s)
- Jiangliu Yin
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Huan Chen
- Hunan Provincial Center for Disease Prevent and Control, Changsha, 410006, Hunan, People's Republic of China
| | - Suonan Li
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Shuai Zhang
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Xieli Guo
- Department of Neurosurgery, Jinjiang Municipal Hospital of Quanzhou Medical College, No. 392, Xinhua Road, Meiling Street, Quanzhou, 362200, Fujian, People's Republic of China.
| |
Collapse
|
15
|
Xu X, Xu H, Ren F, Huang L, Xu J, Li F. Protective effect of scorpion venom heat-resistant synthetic peptide against PM 2.5-induced microglial polarization via TLR4-mediated autophagy activating PI3K/AKT/NF-κB signaling pathway. J Neuroimmunol 2021; 355:577567. [PMID: 33887539 DOI: 10.1016/j.jneuroim.2021.577567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
There is growing evidence that fine particulate matter (PM2.5) is a considerable risk factor for neurodegenerative diseases. Scorpion venom heat-resistant synthetic peptide (SVHRSP) plays a neuroprotective effect by promoting neurogenesis and neuron axon growth. In this study, SVHRSP inhibited the level of TLR4, autophagy and PM2.5-induced microglia M1 polarization, thereby promoting Phosphorylation of PI3K and AKT, inhibiting the expression of NF-κB. Moreover, SVHRSP suppressed the cytotoxic factors and increased the cytoprotective factor. This research demonstrates that SVHRSP relieves PM2.5-induced microglial polarization via TLR4-mediated autophagy activating PI3K/AKT/NF-κB signaling pathway, which provides new insights for the treatment of PM2.5-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Henggui Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fei Ren
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Lanyi Huang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
16
|
Wu L, Chen C, Li Y, Guo C, Fan Y, Yu D, Zhang T, Wen B, Yan Z, Liu A. UPLC-Q-TOF/MS-Based Serum Metabolomics Reveals the Anti-Ischemic Stroke Mechanism of Nuciferine in MCAO Rats. ACS OMEGA 2020; 5:33433-33444. [PMID: 33403305 PMCID: PMC7774285 DOI: 10.1021/acsomega.0c05388] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/03/2020] [Indexed: 05/17/2023]
Abstract
Nuciferine is an aporphine alkaloid monomer that is extracted from the leaves of the lotus species Nymphaea caerulea and Nelumbo nucifera Gaertn. Nuciferine was reported to treat cerebrovascular diseases. However, the potential mechanism of the neuroprotective effects of nuciferine at the metabolomics level is still not unclear. The present research used neurological score, infarct volume, cerebral water content, and ultraperformance liquid chromatography to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based serum metabolomics to elucidate the anti-ischemic stroke effect and mechanisms of nuciferine. The results showed that nuciferine significantly improved neurological deficit scores and ameliorated cerebral edema and infarction. Multivariate data analysis methods were used to examine the differences in serum endogenous metabolism between groups, and the biomarkers of nuciferine on ischemic stroke were identified. Approximately 19 metabolites and 7 metabolic pathways associated with nuciferine on treatment of stroke were found, which indicated that nuciferine exerted a positive therapeutic action on cerebral ischemic by regulating metabolism. These results provided some data support for the study of anti-stroke effect of nuciferine from the perspective of metabolomics.
Collapse
Affiliation(s)
- Lanlan Wu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Chang Chen
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Yongbiao Li
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Cong Guo
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Yuqing Fan
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Dingrong Yu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
| | - Tinglan Zhang
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
| | - Binyu Wen
- Dongfang
Hospital, Beijing University of Chinese
Medicine, No. 6, District
1, Fangxingyuan, Fangzhuang, Fengtai, Beijing 100078, P. R. China
- . Tel/Fax: +010-67689634
| | - Zhiyong Yan
- School
of Life Science and Engineering, Southwest
Jiao Tong University, No. 111, North Section, Second Ring Road, Jinniu District, Chengdu 610031, Sichuan, P. R. China
- . Tel: +86-28-87601838. Fax: +86-28-87603202
| | - An Liu
- Key
Laboratory of Beijing for Identification and Safety Evaluation of
Chinese Medicine, Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, P. R. China
- . Tel: +86-10-64093381. Fax: +86-10-64013996
| |
Collapse
|
17
|
Meng H, Jin W, Yu L, Xu S, Wan H, He Y. Protective effects of polysaccharides on cerebral ischemia: A mini-review of the mechanisms. Int J Biol Macromol 2020; 169:463-472. [PMID: 33347928 DOI: 10.1016/j.ijbiomac.2020.12.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Cerebral ischemia, a common cerebrovascular disease, is one of the great threats to human health. Nowadays, many drugs used in the treatment of cerebral ischemia such as clot busting drugs, antiplatelet drugs, and neuroprotective drugs have limits. It is urgent finding new effective treatments for the patients. Researches have confirmed that many kinds of polysaccharides from natural resources possess therapeutic effects on cerebral ischemia, but are still lack of a comprehensively understanding. In this paper, based on the pathophysiology of cerebral ischemic injury, we summarize the latest discoveries and advancements of 29 kinds of polysaccharides, focusing on their ameliorating effects on cerebral ischemia and the underlying mechanisms. Several mechanisms are involved, mainly including antioxidant activities, anti-inflammatory activities, regulating neuron apoptosis, as well as resisting nitrosative stress injury. Besides, polysaccharides show protective effects through certain signaling pathways including PI3K/Akt, MAPK, and NF-κB, PARP-1/AIF, JNK3/c-Jun/Fas-L, and Nrf2/HO-1 signaling pathways. The main goal of this mini-review is to emphasize the important roles of polysaccharides in attenuating cerebral ischemic injury through the elucidation of mechanisms.
Collapse
Affiliation(s)
- Huanhuan Meng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weifeng Jin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shouchao Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
18
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
19
|
Inhibitory Activity of a Scorpion Defensin BmKDfsin3 against Hepatitis C Virus. Antibiotics (Basel) 2020; 9:antibiotics9010033. [PMID: 31963532 PMCID: PMC7168052 DOI: 10.3390/antibiotics9010033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major worldwide health problem which can cause chronic hepatitis, liver fibrosis and hepatocellular carcinoma (HCC). There is still no vaccine to prevent HCV infection. Currently, the clinical treatment of HCV infection mainly relies on the use of direct-acting antivirals (DAAs) which are expensive and have side effects. Here, BmKDfsin3, a scorpion defensin from the venom of Mesobuthus martensii Karsch, is found to dose-dependently inhibit HCV infection at noncytotoxic concentrations and affect viral attachment and post-entry in HCV life cycle. Further experimental results show that BmKDfsin3 not only suppresses p38 mitogen-activated protein kinase (MAPK) activation of HCV-infected Huh7.5.1 cells, but also inhibits p38 activation of Huh7.5.1 cells stimulated by tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) or lipopolysaccharide (LPS). BmKDfsin3 is also revealed to enter into cells. Using an upstream MyD88 dimerization inhibitor ST2345 or kinase IRAK-1/4 inhibitor I, the inhibition of p38 activation represses HCV replication in vitro. Taken together, a scorpion defensin BmKDfsin3 inhibits HCV replication, related to regulated p38 MAPK activation.
Collapse
|