1
|
Keehn CC, Yazdian A, Hunt PJ, Davila-Siliezar P, Laylani NA, Lee AG. Monoclonal antibodies in neuro-ophthalmology. Saudi J Ophthalmol 2024; 38:13-24. [PMID: 38628411 PMCID: PMC11017005 DOI: 10.4103/sjopt.sjopt_256_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 04/19/2024] Open
Abstract
Neuro-ophthalmologic diseases include a broad range of disorders affecting the afferent and efferent visual pathways. Recently, monoclonal antibody (mAb) therapies have emerged as a promising targeted approach in the management of several of these complex conditions. Here, we describe the mechanism-specific applications and advancements in neuro-ophthalmologic mAb therapies. The application of mAbs in neuro-ophthalmologic diseases highlights our increasing understanding of disease-specific mechanisms in autoimmune conditions such as neuromyelitis optica, thyroid eye disease, and myasthenia gravis. Due to the specificity of mAb therapies, applications in neuro-ophthalmologic diseases have yielded exceptional clinical outcomes, including both reduced rate of relapse and progression to disability, visual function preservation, and quality of life improvement. These advancements have not only expanded the range of treatable neuro-ophthalmologic diseases but also reduced adverse events and increased the response rate to treatment. Further research into neuro-ophthalmologic disease mechanisms will provide accurate and specific targeting of important disease mediators through applications of future mAbs. As our understanding of these diseases and the relevant therapeutic targets evolve, we will continue to build on our understanding of how mAbs interfere with disease pathogenesis, and how these changes improve clinical outcomes and quality of life for patients.
Collapse
Affiliation(s)
- Caroline C. Keehn
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Arman Yazdian
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Patrick J. Hunt
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Pamela Davila-Siliezar
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
| | - Noor A. Laylani
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
| | - Andrew G. Lee
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
- Department of Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, USA
- Department of Ophthalmology, Texas A and M College of Medicine, Bryan, Texas, USA
- Department of Ophthalmology, University of Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
2
|
Redenbaugh V, Flanagan EP. Monoclonal Antibody Therapies Beyond Complement for NMOSD and MOGAD. Neurotherapeutics 2022; 19:808-822. [PMID: 35267170 PMCID: PMC9294102 DOI: 10.1007/s13311-022-01206-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Aquaporin-4 (AQP4)-IgG seropositive neuromyelitis optica spectrum disorders (AQP4-IgG seropositive NMOSD) and myelin oligodendrocyte glycoprotein (MOG)-IgG-associated disease (MOGAD) are inflammatory demyelinating disorders distinct from each other and from multiple sclerosis (MS).While anti-CD20 treatments can be used to treat MS and AQP4-IgG seropositive NMOSD, some MS medications are ineffective or could exacerbate AQP4-IgG seropositive NMOSD including beta-interferons, natalizumab, and fingolimod. AQP4-IgG seropositive NMOSD has a relapsing course in most cases, and preventative maintenance treatments should be started after the initial attack. Rituximab, eculizumab, inebilizumab, and satralizumab all have class 1 evidence for use in AQP4-IgG seropositive NMOSD, and the latter three have been approved by the US Food and Drug Administration (FDA). MOGAD is much more likely to be monophasic than AQP4-IgG seropositive NMOSD, and preventative therapy is usually reserved for those who have had a disease relapse. There is a lack of any class 1 evidence for MOGAD preventative treatment. Observational benefit has been suggested from oral immunosuppressants, intravenous immunoglobulin (IVIg), rituximab, and tocilizumab. Randomized placebo-controlled trials are urgently needed in this area.
Collapse
Affiliation(s)
- Vyanka Redenbaugh
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Rajabally YA. Immunoglobulin and Monoclonal Antibody Therapies in Guillain-Barré Syndrome. Neurotherapeutics 2022; 19:885-896. [PMID: 35648286 PMCID: PMC9159039 DOI: 10.1007/s13311-022-01253-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is an acute autoimmune polyradiculoneuropathy affecting 1-2 subjects per 100,000 every year worldwide. It causes, in its classic form, symmetric weakness in the proximal and distal limb muscles with common involvement of the cranial nerves, particularly facial weakness. Respiratory function is compromised in a case in four. Randomised controlled trials have demonstrated the benefit of therapeutic plasma exchange in hastening time to recovery. Intravenous immunoglobulin was subsequently shown to be as efficacious as plasma exchange in adult subjects. In children, few trials have shown the benefit of intravenous immunoglobulin versus supportive care. Pharmacokinetic studies suggested a relationship between increase in immunoglobulin G level post-infusion and outcome, implying administration of larger doses may be beneficial in subjects with poor prognosis. However, a subsequent trial of a second dose of immunoglobulin in such subjects failed to show improved outcome, while demonstrating a higher risk of thromboembolic side-effects. Monoclonal antibody therapy has more recently been investigated for GBS, after multiple studies in animal models, with different agents and variable postulated mechanisms of action. Eculizumab, a humanised monoclonal antibody against the complement protein C5, was tested in in two randomised, double-blind, placebo-controlled phase 2 trials. Neither showed benefit versus immunoglobulins alone on disability level at 4 weeks, although one study importantly suggested possible, clinically highly relevant, late effects on normalising function. A phase 3 trial is in progress. Preliminary results of a placebo-controlled ongoing study of ANX005, a humanised recombinant antibody against C1q inhibiting the complement cascade, have been promising.
Collapse
Affiliation(s)
- Yusuf A Rajabally
- Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
- Inflammatory Neuropathy Clinic, University Hospitals Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK.
| |
Collapse
|
4
|
Fiala C, Rotstein D, Pasic MD. Pathobiology, Diagnosis, and Current Biomarkers in Neuromyelitis Optica Spectrum Disorders. J Appl Lab Med 2022; 7:305-310. [DOI: 10.1093/jalm/jfab150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/26/2021] [Indexed: 01/26/2023]
Abstract
Abstract
Background
Neuromyelitis optica spectrum disorder (NMOSD) is characterized by chronic inflammation of the central nervous system (CNS), particularly the optic nerves and spinal cord. Although it displays some clinical features similar to multiple sclerosis (MS), the etiology and treatment are distinct, and therefore accurate diagnosis is essential. Autoantibodies targeting the water channel protein aquaporin-4 (AQP4) and the myelin sheath protein myelin oligodendrocyte glycoprotein are the major antigen-specific serological biomarkers known to date, with destruction of astrocytes as the primary mode of CNS damage in AQP4-positive disease.
Content
This mini-review summarizes the pathobiology, clinical features, and current methods of serological testing used to assess NMOSD and differentiate this disorder from MS. A brief summary of emerging therapies is also presented.
Summary
NMOSD can be distinguished from MS through a combination of clinical findings, imaging investigations, and serological analysis. Seronegative cases are particularly difficult to diagnose and can pose a challenge to clinicians. As knowledge deepens, new therapies and biomarkers are expected to improve treatment of this rare debilitating disease.
Collapse
Affiliation(s)
- Clare Fiala
- Laboratory Medicine Program, Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Dalia Rotstein
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Neurology, Unity Health Toronto (St. Michael’s Hospital), Toronto, Ontario, Canada
| | - Maria D Pasic
- Department of Laboratory Medicine, Unity Health Toronto (St. Joseph’s Health Centre), Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Wang ZY, Wang M, Guo JJ, Gao YL, Yu XF. Acute bilateral cerebral infarction in the presence of neuromyelitis optica spectrum disorder: A case report. Medicine (Baltimore) 2020; 99:e22616. [PMID: 33019482 PMCID: PMC7535662 DOI: 10.1097/md.0000000000022616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
RATIONALE Neuromyelitis optica spectrum disorders (NMOSDs) are inflammatory demyelinating disorders of the central nervous system; they are characterized by severe optic neuritis and transverse myelitis. Intravenous methylprednisolone pulse (IVMP) therapy is an effective treatment that is administered to patients in the acute phase of NMOSD; this therapy has achieved remarkable results in clinical practice. However, there are no reports on NMOSD patients who have experienced an acute bilateral cerebral infarction while undergoing IVMP treatment. PATIENT CONCERNS We report on a 62-yr-old woman who was undergoing IVMP therapy for the primary diagnosis of NMOSD. Unexpectedly, the patient's existing limb weakness worsened, and she developed motor aphasia on the second day of IVMP treatment. Additionally, brain magnetic resonance imaging revealed acute bilateral cerebral infarction. DIAGNOSIS The patient's clinical manifestations, medical imaging results, and laboratory test results were taken into consideration; the final diagnosis was acute bilateral cerebral infarction in the presence of NMOSD. INTERVENTIONS Subsequent to the onset of acute cerebral infarction, the patient was immediately treated with oral aspirin, atorvastatin, and intravenous butylphthalide. The hormone dose was adjusted to an oral 60-mg/d dose for maintenance; this was followed by immunoadsorption plasmapheresis for 3 days, and double-filtration plasmapheresis for 2 days. OUTCOMES Following treatment onset, the patient's ocular symptoms significantly improved, and her limb muscle strength gradually recovered. Two months after discharge, the patient's husband reported that she was able to walk with the help of others and take care of herself, and that there was no recurrence. LESSONS Medical professionals must be aware of the possibility of NMOSD patients with cerebrovascular risk factors suffering an acute cerebral infarction while undergoing high-dose IVMP therapy, as this therapy can exacerbate existing problems.
Collapse
|
6
|
Das J, Sharrack B, Snowden JA. Autologous hematopoietic stem-cell transplantation in neurological disorders: current approach and future directions. Expert Rev Neurother 2020; 20:1299-1313. [PMID: 32893698 DOI: 10.1080/14737175.2020.1820325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Autologous hematopoietic stem-cell transplantation (AHSCT) has become increasingly popular in recent years as an effective treatment of immune-mediated neurological diseases. Treatment-related mortality has significantly reduced primarily through better patient selection, optimization of transplant technique, and increased center experience. AREA COVERED Multiple sclerosis is the main indication, but people with neuromyelitis optica spectrum disorder, stiff-person spectrum disorder, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and other immune-mediated neurological disorders also have been treated. The review herein discusses the use of AHSCT in these neurological disorders, the importance of patient selection and transplant technique optimization and future directions. EXPERT OPINION Phase II and III clinical trials have confirmed the safety and efficacy of AHSCT in multiple sclerosis and recent phase II clinical trials have also suggested its safety and efficacy in chronic inflammatory demyelinating polyneuropathy and neuromyelitis optica spectrum disorder, with the evidence in other neurological disorders limited to individual case reports, small case series, and registry data. Therefore, further randomized controlled clinical trials are required to assess its safety and efficacy in other neurological conditions. However, in rare neurological conditions, pragmatic treatment trials or registry-based studies may be more realistic options for gathering efficacy and safety data.
Collapse
Affiliation(s)
- Joyutpal Das
- Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust , Salford, UK.,Cardiovascular medicine, University of Manchester , Manchester, UK.,Department of Neuroscience, NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield , Sheffield, UK
| | - Basil Sharrack
- Department of Neuroscience, NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield , Sheffield, UK
| | - John A Snowden
- Department of Hematology, Sheffield Teaching Hospitals NHS Foundation Trust , Sheffield, UK
| |
Collapse
|
7
|
Ceglie G, Papetti L, Valeriani M, Merli P. Hematopoietic Stem Cell Transplantation in Neuromyelitis Optica-Spectrum Disorders (NMO-SD): State-of-the-Art and Future Perspectives. Int J Mol Sci 2020; 21:ijms21155304. [PMID: 32722601 PMCID: PMC7432050 DOI: 10.3390/ijms21155304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica (NMO) and neuromyelitis optica spectrum disorders (NMOSD) are a group of autoimmune inflammatory disorders of the central nervous system (CNS). Understanding of the molecular basis of these diseases in the last decades has led to an important improvement in the treatment of this disease, in particular, to the use of immunotherapeutic approaches, such as monoclonal antibodies and Hematopoietic Stem Cell Transplantation (HSCT). The aim of this review is to summarize the pathogenesis, biological basis and new treatment options of these disorders, with a particular focus on HSCT applications. Different HSCT strategies are being explored in NMOSD, both autologous and allogeneic HSCT, with the new emergence of therapeutic effects such as an induction of tolerance to auto-antigens and graft versus autoimmunity effects that can be exploited to hopefully treat a disease that still has prognosis.
Collapse
Affiliation(s)
- Giulia Ceglie
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Laura Papetti
- Department of Neurology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.P.); (M.V.)
| | - Massimiliano Valeriani
- Department of Neurology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.P.); (M.V.)
| | - Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
- Correspondence: ; Tel.: +39-06-6859-2623
| |
Collapse
|