1
|
Zhao J, Yang Y, Qin J, Tao S, Jiang C, Huang H, Wan Q, Chen Y, Xu S, Qiao H. Transcutaneous Auricular Vagus Nerve Stimulation Ameliorates Preeclampsia-Induced Apoptosis of Placental Trophoblastic Cells Via Inhibiting the Mitochondrial Unfolded Protein Response. Neurosci Bull 2024; 40:1502-1518. [PMID: 38874677 PMCID: PMC11422338 DOI: 10.1007/s12264-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/28/2024] [Indexed: 06/15/2024] Open
Abstract
Preeclampsia is a serious obstetric complication. Currently, there is a lack of effective preventive approaches for this disease. Recent studies have identified transcutaneous auricular vagus nerve stimulation (taVNS) as a potential novel non-pharmaceutical therapeutic modality for preeclampsia. In this study, we investigated whether taVNS inhibits apoptosis of placental trophoblastic cells through ROS-induced UPRmt. Our results showed that taVNS promoted the release of acetylcholine (ACh). ACh decreased the expression of UPRmt by inhibiting the formation of mitochondrial ROS (mtROS), presumably through M3AChR. This reduced the release of pro-apoptotic proteins (cleaved caspase-3, NF-κB-p65, and cytochrome C) and helped preserve the morphological and functional integrity of mitochondria, thus reducing the apoptosis of placental trophoblasts, improving placental function, and relieving preeclampsia. Our study unravels the potential pathophysiological mechanism of preeclampsia. In-depth characterization of the UPRmt is essential for developing more effective therapeutic strategies for preeclampsia targeting mitochondrial function.
Collapse
Affiliation(s)
- Jing Zhao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xixian New Area, Xianyang, 712046, China
| | - Yanan Yang
- Department of Public Health, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Jiayi Qin
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Siyu Tao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Chunmei Jiang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Huixuan Huang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Qiunan Wan
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Yuqi Chen
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Shouzhu Xu
- Department of Public Health, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China.
| | - Haifa Qiao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xixian New Area, Xianyang, 712046, China.
| |
Collapse
|
2
|
Liu X, Ye M, Ma L. The emerging role of autophagy and mitophagy in tauopathies: From pathogenesis to translational implications in Alzheimer's disease. Front Aging Neurosci 2022; 14:1022821. [PMID: 36325189 PMCID: PMC9618726 DOI: 10.3389/fnagi.2022.1022821] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting more than 55 million individuals worldwide in 2021. In addition to the "amyloid hypothesis," an increasing number of studies have demonstrated that phosphorylated tau plays an important role in AD pathogenesis. Both soluble tau oligomers and insoluble tau aggregates in the brain can induce structural and functional neuronal damage through multiple pathways, eventually leading to memory deficits and neurodegeneration. Autophagy is an important cellular response to various stress stimuli and can generally be categorized into non-selective and selective autophagy. Recent studies have indicated that both types of autophagy are involved in AD pathology. Among the several subtypes of selective autophagy, mitophagy, which mediates the selective removal of mitochondria, has attracted increasing attention because dysfunctional mitochondria have been suggested to contribute to tauopathies. In this review, we summarize the latest findings on the bidirectional association between abnormal tau proteins and defective autophagy, as well as mitophagy, which might constitute a vicious cycle in the induction of neurodegeneration. Neuroinflammation, another important feature in the pathogenesis and progression of AD, has been shown to crosstalk with autophagy and mitophagy. Additionally, we comprehensively discuss the relationship between neuroinflammation, autophagy, and mitophagy. By elucidating the underlying molecular mechanisms governing these pathologies, we highlight novel therapeutic strategies targeting autophagy, mitophagy and neuroinflammation, such as those using rapamycin, urolithin, spermidine, curcumin, nicotinamide, and actinonin, for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Xiaolan Liu
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Meng Ye
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Liang Ma
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| |
Collapse
|
3
|
Focal-type, but not Diffuse-type, Amyloid Beta Plaques are Correlated with Alzheimer's Neuropathology, Cognitive Dysfunction, and Neuroinflammation in the Human Hippocampus. Neurosci Bull 2022; 38:1125-1138. [PMID: 36028642 PMCID: PMC9554074 DOI: 10.1007/s12264-022-00927-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Amyloid beta (Aβ) plaques are one of the hallmarks of Alzheimer’s disease (AD). However, currently available anti-amyloid therapies fail to show effectiveness in the treatment of AD in humans. It has been found that there are different types of Aβ plaque (diffuse and focal types) in the postmortem human brain. In this study, we aimed to investigate the correlations among different types of Aβ plaque and AD-related neuropathological and cognitive changes based on a postmortem human brain bank in China. The results indicated that focal plaques, but not diffuse plaques, significantly increased with age in the human hippocampus. We also found that the number of focal plaques was positively correlated with the severity of AD-related neuropathological changes (measured by the “ABC” scoring system) and cognitive decline (measured by the Everyday Cognitive Insider Questionnaire). Furthermore, most of the focal plaques were co-localized with neuritic plaques (identified by Bielschowsky silver staining) and accompanied by microglial and other inflammatory cells. Our findings suggest the potential of using focal-type but not general Aβ plaques as biomarkers for the neuropathological evaluation of AD.
Collapse
|