1
|
Theodorakis N, Feretzakis G, Tzelves L, Paxinou E, Hitas C, Vamvakou G, Verykios VS, Nikolaou M. Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine. J Pers Med 2024; 14:931. [PMID: 39338186 PMCID: PMC11433587 DOI: 10.3390/jpm14090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Aging is a fundamental biological process characterized by a progressive decline in physiological functions and an increased susceptibility to diseases. Understanding aging at the molecular level is crucial for developing interventions that could delay or reverse its effects. This review explores the integration of machine learning (ML) with multi-omics technologies-including genomics, transcriptomics, epigenomics, proteomics, and metabolomics-in studying the molecular hallmarks of aging to develop personalized medicine interventions. These hallmarks include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Using ML to analyze big and complex datasets helps uncover detailed molecular interactions and pathways that play a role in aging. The advances of ML can facilitate the discovery of biomarkers and therapeutic targets, offering insights into personalized anti-aging strategies. With these developments, the future points toward a better understanding of the aging process, aiming ultimately to promote healthy aging and extend life expectancy.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Lazaros Tzelves
- 2nd Department of Urology, Sismanoglio General Hospital, Sismanogliou 37, National and Kapodistrian University of Athens, 15126 Athens, Greece
| | - Evgenia Paxinou
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Christos Hitas
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Georgia Vamvakou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| | - Vassilios S Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece
| | - Maria Nikolaou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece
| |
Collapse
|
2
|
Wang W, Zhang ZQ, Zhang YC, Wu YQ, Yang Z, Zheng YZ, Lu JH, Tu PF, Zeng KW. Cayratia albifolia C.L.Li exerts anti-rheumatoid arthritis effect by inhibiting macrophage activation and neutrophil extracellular traps (NETs). Chin Med 2024; 19:42. [PMID: 38444022 PMCID: PMC10913656 DOI: 10.1186/s13020-024-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Cayratia albifolia C.L.Li (CAC), commonly known as "Jiao-Mei-Gu" in China, has been extensively utilized by the Dong minority for several millennia to effectively alleviate symptoms associated with autoimmune diseases. CAC extract is believed to possess significant anti-inflammatory properties within the context of Dong medicine. However, an in-depth understanding of the specific pharmaceutical effects and underlying mechanisms through which CAC extract acts against rheumatoid arthritis (RA) has yet to be established. METHODS Twenty-four Sprague-Dawley rats were divided into four groups, with six rats in each group. To induce the collagen-induced arthritis (CIA) model, the rats underwent a process of double immunization with collagen and adjuvant. CAC extract (100 mg/kg) was orally administered to rats. The anti-RA effects were evaluated in CIA rats by arthritis score, hind paw volume and histopathology analysis. Pull-down assay was conducted to identify the potential targets of CAC extract from RAW264.7 macrophage lysates. Moreover, mechanism studies of CAC extract were performed by immunofluorescence assays, real-time PCR and Western blot. RESULTS CAC extract was found to obviously down-regulate hind paw volume of CIA rats, with diminished inflammation response and damage. 177 targets were identified from CAC extract by MS-based pull-down assay. Bioinformatics analysis found that these targets were mainly enriched in macrophage activation and neutrophils extracellular traps (NETs). Additionally, we reported that CAC extract owned significant anti-inflammatory activity by regulating PI3K-Akt-mTOR signal pathway, and inhibited NETosis in response to PMA. CONCLUSIONS We clarified that CAC extract significantly attenuated RA by inactivating macrophage and reducing NETosis via a multi-targets regulation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zai-Qi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 41800, China.
| | - Yi-Chi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi-Qiang Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, SAR, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Pojero F, Gervasi F, Fiore SD, Aiello A, Bonacci S, Caldarella R, Attanzio A, Candore G, Caruso C, Ligotti ME, Procopio A, Restivo I, Tesoriere L, Allegra M, Accardi G. Anti-Inflammatory Effects of Nutritionally Relevant Concentrations of Oleuropein and Hydroxytyrosol on Peripheral Blood Mononuclear Cells: An Age-Related Analysis. Int J Mol Sci 2023; 24:11029. [PMID: 37446206 DOI: 10.3390/ijms241311029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Immunosenescence and inflammaging facilitate the insurgence of chronic diseases. The Mediterranean diet is a non-invasive intervention to improve the chronic low-grade inflammatory status associated with aging. Olive oil oleuropein (OLE) and hydroxytyrosol (HT) demonstrated a controversial modulatory action on inflammation in vitro when tested at concentrations exceeding those detectable in human plasma. We studied the potential anti-inflammatory effects of OLE and HT at nutritionally relevant concentrations on peripheral blood mononuclear cells (PBMCs) as regards cell viability, frequency of leukocyte subsets, and cytokine release, performing an age-focused analysis on two groups of subjects: Adult (age 18-64 years) and Senior (age ≥ 65 years). OLE and HT were used alone or as a pre-treatment before challenging PBMCs with lipopolysaccharide (LPS). Both polyphenols had no effect on cell viability irrespective of LPS, but 5 µM HT had an LPS-like effect on monocytes, reducing the intermediate subset in Adult subjects. OLE and HT had no effect on LPS-triggered release of TNF-α, IL-6 and IL-8, but 5 µM HT reduced IL-10 secretion by PBMCs from Adult vs. Senior group. In summary, nutritionally relevant concentrations of OLE and HT elicit no anti-inflammatory effect and influence the frequency of immune cell subsets with age-related different outcomes.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy
| | - Salvatore Davide Fiore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Sonia Bonacci
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, "P. Giaccone" University Hospital, 90127 Palermo, Italy
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Antonio Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|