1
|
Xu JJ, Li HF, Wu ZY. Paroxysmal Kinesigenic Dyskinesia: Genetics and Pathophysiological Mechanisms. Neurosci Bull 2024; 40:952-962. [PMID: 38091244 PMCID: PMC11250761 DOI: 10.1007/s12264-023-01157-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/03/2023] [Indexed: 07/16/2024] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD), the most common type of paroxysmal movement disorder, is characterized by sudden and brief attacks of choreoathetosis or dystonia triggered by sudden voluntary movements. PKD is mainly caused by mutations in the PRRT2 or TMEM151A gene. The exact pathophysiological mechanisms of PKD remain unclear, although the function of PRRT2 protein has been well characterized in the last decade. Based on abnormal ion channels and disturbed synaptic transmission in the absence of PRRT2, PKD may be channelopathy or synaptopathy, or both. In addition, the cerebellum is regarded as the key pathogenic area. Spreading depolarization in the cerebellum is tightly associated with dyskinetic episodes. Whereas, in PKD, other than the cerebellum, the role of the cerebrum including the cortex and thalamus needs to be further investigated.
Collapse
Affiliation(s)
- Jiao-Jiao Xu
- Department of Medical Genetics and Center for Rare Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Neurology in the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hong-Fu Li
- Department of Medical Genetics and Center for Rare Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Neurology in the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Department of Neurology in the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Chen L, Qin Y, Guo T, Zhu W, Lin J, Xing T, Duan X, Zhang Y, Ruan E, Li X, Yin P, Li S, Li XJ, Yang S. HAP40 modulates mutant Huntingtin aggregation and toxicity in Huntington's disease mice. Cell Death Dis 2024; 15:337. [PMID: 38744826 PMCID: PMC11094052 DOI: 10.1038/s41419-024-06716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.
Collapse
Affiliation(s)
- Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Tingting Guo
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenzhen Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jingpan Lin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Tingting Xing
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xuezhi Duan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yiran Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Eshu Ruan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiang Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Li XY, Xie JJ, Wang JH, Bao YF, Dong Y, Gao B, Shen T, Huang PY, Ying HC, Xu H, Roe AW, Lai HY, Wu ZY. Perivascular spaces relate to the course and cognition of Huntington's disease. Transl Neurodegener 2023; 12:30. [PMID: 37287074 DOI: 10.1186/s40035-023-00359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/25/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Xiao-Yan Li
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Jin-Hong Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yu-Feng Bao
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Gao
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Shen
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Pei-Yu Huang
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao-Chao Ying
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Han Xu
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Hsin-Yi Lai
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
4
|
Li XY, Bao YF, Xie JJ, Gao B, Qian SX, Dong Y, Wu ZY. Application Value of Serum Neurofilament Light Protein for Disease Staging in Huntington's Disease. Mov Disord 2023. [PMID: 37148558 DOI: 10.1002/mds.29430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Neurofilament light protein (NfL) has been proven to be a sensitive biomarker for Huntington's disease (HD). However, these studies did not include HD patients at advanced stages or with larger CAG repeats (>50), leading to a knowledge gap of the characteristics of NfL. METHODS Serum NfL (sNfL) levels were quantified using an ultrasensitive immunoassay. Participants were assessed by clinical scales and 7.0 T magnetic resonance imaging. Longitudinal samples and clinical data were obtained. RESULTS Baseline samples were available from 110 controls, 90 premanifest HD (pre-HD) and 137 HD individuals. We found levels of sNfL significantly increased in HD compared to pre-HD and controls (both P < 0.0001). The increase rates of sNfL were differed by CAG repeat lengths. However, there was no difference in sNfL levels in manifest HD from early to late stages. In addition, sNfL levels were associated with cognitive measures in pre-HD and manifest HD group, respectively. The increased levels of sNfL were also closely related to microstructural changes in white matter. In the longitudinal analysis, baseline sNfL did not correlate with subsequent clinical function decline. Random forest analysis revealed that sNfL had good power for predicting disease onset. CONCLUSIONS Although sNfL levels are independent of disease stages in manifest HD, it is still an optimal indicator for predicting disease onset and has potential use as a surrogate biomarker of treatment effect in clinical trials. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Feng Bao
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Gao
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Xia Qian
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
5
|
Huynh K, Nategh L, Jamadar S, Stout J, Georgiou-Karistianis N, Lampit A. Cognition-oriented treatments and physical exercise on cognitive function in Huntington's disease: a systematic review. J Neurol 2023; 270:1857-1879. [PMID: 36513779 DOI: 10.1007/s00415-022-11516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is prevalent in Huntington's disease (HD), with no treatments currently available. While cognition-oriented treatments and physical exercise have shown efficacy in improving cognition in other populations, they have not been systematically reviewed in HD. This systematic review aims to examine the effects of cognitive and exercise interventions on cognition in HD, along with effects on psychosocial function, functional independence, and neuroimaging outcomes. Seventeen studies (three cognitive, seven exercise, seven combining cognitive and physical exercise) were included. While there was generally low certainty of evidence, interventions that included cognitive training appeared to have larger effect sizes on cognition, while physical exercise (alone or combined with cognitive rehabilitation or stimulation) showed negligible effect sizes. On the other hand, combined interventions had larger effects on psychosocial function. Finally, effects on functional independence appeared negligible following exercise and combined interventions, and effects on neuroimaging outcomes were inconclusive. Larger studies should seek to confirm the benefits of cognitive and physical interventions, and further explore changes in functional independence and neural outcomes.
Collapse
Affiliation(s)
- Katharine Huynh
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - Leila Nategh
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - Sharna Jamadar
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Clayton, Victoria, 3800, Australia
| | - Julie Stout
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia
| | - Nellie Georgiou-Karistianis
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 18 Innovation Walk, Clayton, Victoria, 3800, Australia.
| | - Amit Lampit
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| |
Collapse
|
6
|
Zhang S, Lin J, Cheng Y, Hou Y, Shang H. Aberrant resting-state brain activity in Huntington's disease: A voxel-based meta-analysis. Front Neurol 2023; 14:1124158. [PMID: 37064205 PMCID: PMC10098104 DOI: 10.3389/fneur.2023.1124158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionFunctional neuroimaging could provide abundant information of underling pathophysiological mechanisms of the clinical triad including motor, cognitive and psychiatric impairment in Huntington's Disease (HD).MethodsWe performed a voxel-based meta-analysis using anisotropic effect size-signed differential mapping (AES-SDM) method.Results6 studies (78 symptomatic HD, 102 premanifest HD and 131 healthy controls) were included in total. Altered resting-state brain activity was primarily detected in the bilateral medial part of superior frontal gyrus, bilateral anterior cingulate/paracingulate gyrus, left insula, left striatum, right cortico-spinal projections area, right inferior temporal gyrus area, right thalamus, right cerebellum and right gyrus rectus area. Premanifest and symptomatic HD patients showed different alterative pattern in the subgroup analyses.DiscussionThe robust and consistent abnormalities in the specific brain regions identified in the current study could help to understand the pathophysiology of HD and explore reliable neuroimaging biomarkers for monitoring disease progression, or even predicting the onset of premanifest HD patients.
Collapse
Affiliation(s)
- Sirui Zhang
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfan Cheng
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbin Hou
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Rare Disease Center, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huifang Shang
| |
Collapse
|