1
|
Zhang M, Yang L, Li Z, Fei F, Zhou Y, Jiang D, Zheng Y, Cheng H, Wang Y, Xu C, Fang J, Wang S, Chen Z, Wang Y. Low-frequency stimulation in the zona incerta attenuates seizure via driving GABAergic neuronal activity. Neurobiol Dis 2024; 192:106424. [PMID: 38290566 DOI: 10.1016/j.nbd.2024.106424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Managing refractory epilepsy presents a significant a substantial clinical challenge. Deep brain stimulation (DBS) has emerged as a promising avenue for addressing refractory epilepsy. However, the optimal stimulation targets and effective parameters of DBS to reduce seizures remian unidentified. OBJECTIVES This study endeavors to scrutinize the therapeutic potential of DBS within the zona incerta (ZI) across diverse seizure models and elucidate the associated underlying mechanisms. METHODS We evaluated the therapeutic potential of DBS with different frequencies in the ZI on kainic acid (KA)-induced TLE model or M1-cortical seizures model, pilocarpine-induced M1-cortical seizure models, and KA-induced epilepsy model. Further, employing calcium fiber photometry combined with cell-specific ablation, we sought to clarified the causal role of ZI GABAergic neurons in mediating the therapeutic effects of DBS. RESULTS Our findings reveal that DBS in the ZI alleviated the severity of seizure activities in the KA-induced TLE model. Meanwhile, DBS attenuated seizure activities in KA- or pilocarpine-induced M1-cortical seizure model. In addition, DBS exerts a mitigating influence on KA induced epilepsy model. DBS in the ZI showed anti-seizure effects at low frequency spectrum, with 5 Hz exhibiting optimal efficacy. The low-frequency DBS significantly increased the calcium activities of ZI GABAergic neurons. Furthermore, selective ablation of ZI GABAergic neurons with taCasp3 blocked the anti-seizure effect of low-frequency DBS, indicating the anti-seizure effect of DBS is mediated by the activation of ZI GABAergic neurons. CONCLUSION Our results demonstrate that low-frequency DBS in the ZI attenuates seizure via driving GABAergic neuronal activity. This suggests that the ZI represents a potential DBS target for treating both hippocampal and cortical seizure through the activation of GABAergic neurons, thereby holding therapeutic significance for seizure treatment.
Collapse
Affiliation(s)
- Mengdi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yuan Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Dongxiao Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Hui Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jiajia Fang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|