1
|
Heparin-Tagged PLA-PEG Copolymer-Encapsulated Biochanin A-Loaded (Mg/Al) LDH Nanoparticles Recommended for Non-Thrombogenic and Anti-Proliferative Stent Coating. Int J Mol Sci 2021; 22:ijms22115433. [PMID: 34063962 PMCID: PMC8196732 DOI: 10.3390/ijms22115433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Drug-eluting stents have been widely implanted to prevent neointimal hyperplasia associated with bare metal stents. Conventional polymers and anti-proliferative drugs suffer from stent thrombosis due to the non-selective nature of the drugs and hypersensitivity to polymer degradation products. Alternatively, various herbal anti-proliferative agents are sought, of which biochanin A (an isoflavone phytoestrogen) was known to have anti-proliferative and vasculoprotective action. PLA-PEG diblock copolymer was tagged with heparin, whose degradation releases heparin locally and prevents thrombosis. To get a controlled drug release, biochanin A was loaded in layered double hydroxide nanoparticles (LDH), which are further encapsulated in a heparin-tagged PLA-PEG copolymer. LDH nanoparticles are synthesized by a co-precipitation process; in situ as well as ex situ loading of biochanin A were done. PLA-PEG-heparin copolymer was synthesized by esterification reaction, and the drug-loaded nanoparticles are coated. The formulation was characterized by FTIR, XRD, DSC, DLS, and TEM. In vitro drug release studies, protein adhesion, wettability, hemocompatibility, and degradation studies were performed. The drug release was modeled by mathematical models to further emphasize the mechanism of drug release. The developed drug-eluting stent coating is non-thrombogenic, and it offers close to zero-order release for 40 days, with complete polymer degradation in 14 weeks.
Collapse
|
2
|
Rodríguez-Arias JJ, Ortega-Paz L, Brugaletta S. Durable polymer everolimus-eluting stents: history, current status and future prospects. Expert Rev Med Devices 2020; 17:671-682. [PMID: 32543934 DOI: 10.1080/17434440.2020.1784005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Coronary percutaneous interventions have evolved from plain old balloon angioplasty (POBA) to stent implantation, which itself evolved from bare-metal stents (BMS) to the new biodegradable stents which try to restore endothelial function. Currently, the most commonly used stent is the everolimus-eluting stent. AREAS COVERED This review will cover the current status of durable polymer everolimus-eluting stent, its history, and future perspectives. Nowadays, the everolimus-eluting stent is the most used device in the acute and chronic settings due to its safety and efficacy. EXPERT OPINION Durable polymer everolimus-eluting stent, supported by much evidence, has demonstrated its efficacy and safety, not only in de novo artery lesions, but in multiples scenarios, such as the acute setting and diabetic population, becoming one of the most polyvalent stents available. Nowadays, research is focused on the reduction of antiplatelet treatment duration. Similar rates of stent thrombosis with short dual antiplatelet treatment regimens of 1 to 3 months compared to pronged treatment have been observed. However, specific studies should be performed to evaluate this possibility.
Collapse
Affiliation(s)
- Juan J Rodríguez-Arias
- Clinic Cardiovascular Institute, Department of Cardiology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona , Barcelona, Spain
| | - Luis Ortega-Paz
- Clinic Cardiovascular Institute, Department of Cardiology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona , Barcelona, Spain
| | - Salvatore Brugaletta
- Clinic Cardiovascular Institute, Department of Cardiology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona , Barcelona, Spain
| |
Collapse
|
3
|
Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater 2018; 7:175-205. [PMID: 30203125 PMCID: PMC6173682 DOI: 10.1007/s40204-018-0097-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/25/2018] [Indexed: 12/01/2022] Open
Abstract
Compared to bare-metal stents (BMSs), drug-eluting stents (DESs) have been regarded as a revolutionary change in coronary artery diseases (CADs). Releasing pharmaceutical agents from the stent surface was a promising progress in the realm of cardiovascular stents. Despite supreme advantages over BMSs, in-stent restenosis (ISR) and long-term safety of DESs are still deemed ongoing concerns over clinically application of DESs. The failure of DESs for long-term clinical use is associated with following factors including permanent polymeric coating materials, metallic stent platforms, non-optimal drug releasing condition, and factors that have recently been supposed as contributory factors such as degradation products of polymers, metal ions due to erosion and degradation of metals and their alloys utilizing in some stents as metal frameworks. Discovering the direct relation between stent materials and associating adverse effects is a complicated process, and yet it has not been resolved. For clinical success it is of significant importance to optimize DES design and explore novel strategies to overcome all problems including inflammatory response, delay endothelialization, and sub-acute stent thrombosis (ST) simultaneously. In this work, scientific reports are reviewed particularly focusing on recent advancements in DES design which covers both potential improvements of existing and recently novel prototype stent fabrications. Covering a wide range of information from the BMSs to recent advancement, this study mostly sheds light on DES's concepts, namely stent composition, drug release mechanism, and coating techniques. This review further reports different forms of DES including fully biodegradable DESs, shape-memory ones, and polymer-free DESs.
Collapse
Affiliation(s)
- Setareh Borhani
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Shadi Hassanajili
- Department of Nanochemical Engineering, School of New Science and Technology, Shiraz University, Shiraz, Iran.
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| |
Collapse
|
4
|
Pence JC, Clancy KBH, Harley BAC. Proangiogenic Activity of Endometrial Epithelial and Stromal Cells in Response to Estradiol in Gelatin Hydrogels. ACTA ACUST UNITED AC 2017; 1. [PMID: 29230433 DOI: 10.1002/adbi.201700056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biomaterial vascularization remains a major focus in the field of tissue engineering. Biomaterial culture of endometrial cells is described as a platform to inform the design of proangiogenic biomaterials. The endometrium undergoes rapid growth and shedding of dense vascular networks during each menstrual cycle mediated via estradiol and progesterone in vivo. Cocultures of endometrial epithelial and stromal cells encapsulated within a methacrylamide-functionalized gelatin hydrogel are employed. It is reported that proangiogenic gene expression profiles and vascular endothelial growth factor production are hormone dependent in endometrial epithelial cells, but that hormone signals have no effect on human telomerase reverse transcriptase (hTERT)-immortalized endometrial stromal cells. This study subsequently examines whether the magnitude of epithelial cell response is sufficient to induce changes in human umbilical vein endothelial cell network formation. Incorporation of endometrial stromal cells improves vessel formation, but co-culture with endometrial epithelial cells leads to a decrease in vascular formation, suggesting the need for stratified cocultures of endometrial epithelial and stromal cells with endothelial cells. Given the transience of hormonal signals within 3D biomaterials, the inclusion of sex hormone binding globulin (SHBG) to alter the bioavailability of estradiol within the hydrogel is reported, demonstrating a strategy to reduce diffusive losses via SHBG-mediated estradiol sequestration.
Collapse
Affiliation(s)
- Jacquelyn C Pence
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews St, Urbana, IL 61801, USA
| | - Kathryn B H Clancy
- Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews St, Urbana IL 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews St, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Deshpande D, Kethireddy S, Janero DR, Amiji MM. Therapeutic Efficacy of an ω-3-Fatty Acid-Containing 17-β Estradiol Nano-Delivery System against Experimental Atherosclerosis. PLoS One 2016; 11:e0147337. [PMID: 26840601 PMCID: PMC4740455 DOI: 10.1371/journal.pone.0147337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/31/2015] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis and its consequences remain prevalent clinical challenges throughout the world. Initiation and progression of atherosclerosis involves a complex, dynamic interplay among inflammation, hyperlipidemia, and endothelial dysfunction. A multicomponent treatment approach targeted for delivery within diseased vessels could prove beneficial in treating atherosclerosis. This study was undertaken to evaluate the multimodal effects of a novel ω-3-fatty acid-rich, 17-β-estradiol (17-βE)-loaded, CREKA-peptide-modified nanoemulsion system on experimental atherosclerosis. In vitro treatment of cultured human aortic endothelial cells (ECs) with the 17-βE-loaded, CREKA-peptide-modified nanoemulsion system increased cellular nitrate/nitrite, indicating improved nitric oxide formation. In vivo, systemic administration of this nanoemulsion system to apolipoprotein-E knock out (ApoE-/-) mice fed a high-fat diet significantly improved multiple parameters related to the etiology and development of occlusive atherosclerotic vasculopathy: lesion area, circulating plasma lipid levels, and expression of aortic-wall inflammatory markers. These salutary effects were attributed selectively to the 17-βE and/or ω-3 polyunsaturated fatty acid components of the nano-delivery system. At therapeutic doses, the 17-βE-loaded, CREKA-peptide modified nanoemulsion system appeared to be biocompatible in that it elicited no apparent adverse/toxic effects, as indexed by body weight, plasma alanine aminotransferase/aspartate aminotransferase levels, and liver and kidney histopathology. The study demonstrates the therapeutic potential of a novel, 17-βE-loaded, CREKA-peptide-modified nanoemulsion system against atherosclerosis in a multimodal fashion by reducing lesion size, lowering the levels of circulating plasma lipids and decreasing the gene expression of inflammatory markers associated with the disease.
Collapse
Affiliation(s)
- Dipti Deshpande
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Sravani Kethireddy
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - David R. Janero
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
- Center for Drug Discovery, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States of America
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
6
|
Abstract
Nanofiber was explored as a stent surface coating substance for the treatment of coronary artery diseases (CAD). Nanofibers loaded with nanoparticles containing β-estradiol were developed and exploited to prevent stent-induced restenosis through regulation of the reactive oxygen species (ROS). Eudragit S-100 (ES), a versatile polymer, was used as a nanoparticle (NP) base, and the mixtures of hexafluoro-2-propanol (HFIP), PLGA and PLA at varying ratios were used as a nanofiber base. β-Estradiol was used as a primary compound to alleviate the ROS activity at the subcellular level. Nile-Red was used as a visual marker. Stent was coated with nanofibers produced by electrospinning technique comprising the two-step process. Eudragit nanoparticles (ES-NP) as well as 4 modified types of NP-W (ES-NP were dispersed in H2O, which was mixed with HFIP (1:1 (v/v) and then subsequently added with 15% PLGA), NP-HW (ES-NP were dispersed in H2O, which was mixed with HFIP (1:1 (v/v)) already containing 15% PLGA), NP-CHA (ES-NP with a chitosan layer were added in H2O, which was mixed with HFIP (1:1 (v/v)) containing 15% PLGA), and NP-CHB (ES-NP with a chitosan layer were added in H2O, which was mixed with HFIP (1:1 (v/v)) containing the mixture of PLGA and PLA at a ratio of 4:1) were developed, and their properties, such as the loading capacity of β-estradiol, the release profiles of β-estradiol, cell cytotoxicity and antioxidant responses to ROS, were characterized and compared. Among composite nanofibers loaded with nanoparticles, NP-CHB had the maximal yield and drug-loading amount of 66.5 ± 3.7% and 147.9 ± 10.1 μg, respectively. The nanofibers of NP-CHB coated on metallic mandrel offered the most sustained release profile of β-estradiol. In the confocal microscopy study, NP-W exhibited a low fluorescent intensity of Nile-Red as compared with NP-HW, indicating that the stability of nanoparticles decreased, as the percentage volume of the organic solvent increased. Nanofibers incorporated with β-estradiol yielded a high endothelial proliferation rate, which was about 3-fold greater than the control (without β-estradiol). The cells treated with the enhanced level of H2O2 (>1 mM: as ROS source) were mostly nonviable (81.1 ± 12.4%, p < 0.01), indicating that ROS induce cell apoptosis and trigger the rupture of atheroma thin layer in a concentration dependent manner. Nanofibers containing β-estradiol (0.5 mM) lowered cellular cytotoxicity from 25.2 ± 4.9% to 8.1 ± 1.4% in the presence of 600 μM H2O2, and from 86.8 ± 8.4% to 59.4 ± 8.7% in the presence of 1.0 mM H2O2, suggesting that β-estradiol efficiently protected hPCECs from ROS induced cytotoxicity. The level of NO production in hPCECs in the presence of β-estradiol after 6 days of incubation was much greater than that of the control without β-estradiol. In summary, nanofibers loaded with nanoparticles containing β-estradiol could be used as a suitable platform for the surface coating of a cardiovascular stent, achieving enhanced endothelialization at the implanted sites of blood vessels.
Collapse
Affiliation(s)
- Byeongtaek Oh
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | | |
Collapse
|
7
|
Engineering of an ω-3 polyunsaturated fatty acid-containing nanoemulsion system for combination C6-ceramide and 17β-estradiol delivery and bioactivity in human vascular endothelial and smooth muscle cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:885-94. [DOI: 10.1016/j.nano.2013.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/26/2013] [Accepted: 02/19/2013] [Indexed: 12/14/2022]
|
8
|
Iqbal J, Gunn J, Serruys PW. Coronary stents: historical development, current status and future directions. Br Med Bull 2013; 106:193-211. [PMID: 23532779 DOI: 10.1093/bmb/ldt009] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Coronary angioplasty with stenting has revolutionized the treatment of coronary artery disease. This article describes the history of coronary angioplasty and stenting, reviews the contemporary stents and recommendations and highlights the on-going work and potential future directions. SOURCES OF DATA This review examined the data on coronary stents available in PubMed. AREAS OF AGREEMENT Coronary artery stenting is the treatment of choice for patients requiring coronary angioplasty. Stents, and particularly drug-eluting stents, reduce the risk of restenosis, but may be associated with the hazard of late stent thrombosis. Dual anti-platelet treatment is recommended for patients receiving coronary stents. AREAS OF CONTROVERSY The selection of stents for various lesions and patients and the duration of anti-platelet therapy remain debated areas. AREAS TIMELY FOR DEVELOPING RESEARCH There are on-going preclinical and clinical studies to develop better stent platforms, more biocompatible polymers, novel anti-proliferative and anti-platelet drugs, pro-healing stents and bioresorbable scaffolds.
Collapse
Affiliation(s)
- Javaid Iqbal
- Thorax Centre, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | | | |
Collapse
|