1
|
Lou X, Lu Y, Tang B, Zhou X. Clinical Effects of "Selective Drug" Regulating Vagus Nerve Signal Pathway in Vagally-Mediated Atrial Fibrillation. Med Sci Monit 2018; 24:2210-2217. [PMID: 29652036 PMCID: PMC5916093 DOI: 10.12659/msm.906044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The cardiac autonomic nervous system plays a crucial role in genesis and development of atrial fibrillation (AF) through the G protein signal transduction pathway. Therefore, intervening in the G protein signal transduction pathway may be a new “selective drug” method to regulate autonomic nerve activity to prevent vagally-mediated AF. Material/Methods Seventeen adult beagles were randomized into 3 groups: shame-operation control group (group A, n=5), empty vector gene control group (group B, n=6), and Gαi2ctp gene experimental group (group C, n=6). Group A was injected with normal saline into the anterior atrial wall, and group B and group C animals were injected with recombinant adenovirus with empty vector or Gαi2ctp vector in the same region. AF was induced by the method of rapid atrial pacing in groups B and C. To determine the clinical effect of vagal modulation, the effective refractory periods (ERP) and field action potential duration (FAPD) were evaluated by electrophysiological study. The expression levels of tyrosine hydroxylase (TH) and choline acetyl transferase (CHAT) in different parts were determined with immunohistochemistry. Results After successful Gαi2ctp gene transfer, in group B, the ERP and FAPD significantly decreased (P<0.05), and TH and CHAT expression observably increased (P<0.05), while those differences were absent between groups A and C (P>0.05). Conclusions Recombinant adenovirus-mediated overexpression of Gαi2ctp in canine myocardial cells can interfere with the activity of the vagus nerve, reverse the development and progression of electrical remodeling, and reduce the incidence of AF.
Collapse
Affiliation(s)
- Xue Lou
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Yanmei Lu
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Baopeng Tang
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Xianhui Zhou
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
2
|
Salavatian S, Beaumont E, Longpré JP, Armour JA, Vinet A, Jacquemet V, Shivkumar K, Ardell JL. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. Am J Physiol Heart Circ Physiol 2016; 311:H1311-H1320. [PMID: 27591222 DOI: 10.1152/ajpheart.00443.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022]
Abstract
Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory.
Collapse
Affiliation(s)
- Siamak Salavatian
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada.,Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and
| | - Eric Beaumont
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Jean-Philippe Longpré
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada
| | - J Andrew Armour
- Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and.,Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California
| | - Alain Vinet
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada
| | - Vincent Jacquemet
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada
| | - Kalyanam Shivkumar
- Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and.,Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California
| | - Jeffrey L Ardell
- Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and .,Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
4
|
Wang HT, Xu M, Fan B, Liu XT, Su FF, Zeng D, Ren J, Zheng QS. Low-Level Electrical Stimulation of Aortic Root Ventricular Ganglionated Plexi Attenuates Autonomic Nervous System–Mediated Atrial Fibrillation. JACC Clin Electrophysiol 2015; 1:390-397. [DOI: 10.1016/j.jacep.2015.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
|
5
|
Kawashima T, Thorington RW, Sato F. Systematic and comparative morphologies of the extrinsic cardiac nervous system in lemurs (Primates: Strepsirrhini: Infraorder Lemuriformes, Gray, 1821) with evolutionary morphological implications. ZOOL ANZ 2013. [DOI: 10.1016/j.jcz.2012.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
LIU YU, SCHERLAG BENJAMINJ, FAN YOUQI, VARMA VANDANA, MALE SHAILESH, CHAUDHRY MUHAMMADA, HUANG CONGXIN, PO SUNNYS. Inducibility of Atrial Fibrillation After GP Ablations and “Autonomic Blockade”: Evidence for the Pathophysiological Role of the Nonadrenergic and Noncholinergic Neurotransmitters. J Cardiovasc Electrophysiol 2012; 24:188-95. [DOI: 10.1111/j.1540-8167.2012.02449.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
SCHERLAG BENJAMINJ, NAKAGAWA HIROSHI, LAZZARA RALPH, PO SUNNYS. Learning Without Burning: Emerging Knowledge of the Autonomic Innervation of the Heart. Pacing Clin Electrophysiol 2011; 34:1457-9. [DOI: 10.1111/j.1540-8159.2011.03206.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Shen MJ, Shinohara T, Park HW, Frick K, Ice DS, Choi EK, Han S, Maruyama M, Sharma R, Shen C, Fishbein MC, Chen LS, Lopshire JC, Zipes DP, Lin SF, Chen PS. Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation 2011; 123:2204-12. [PMID: 21555706 DOI: 10.1161/circulationaha.111.018028] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND We hypothesize that left-sided low-level vagus nerve stimulation (LL-VNS) can suppress sympathetic outflow and reduce atrial tachyarrhythmias in ambulatory dogs. METHODS AND RESULTS We implanted a neurostimulator in 12 dogs to stimulate the left cervical vagus nerve and a radiotransmitter for continuous recording of left stellate ganglion nerve activity, vagal nerve activities, and ECGs. Group 1 dogs (N=6) underwent 1 week of continuous LL-VNS. Group 2 dogs (N=6) underwent intermittent rapid atrial pacing followed by active or sham LL-VNS on alternate weeks. Integrated stellate ganglion nerve activity was significantly reduced during LL-VNS (7.8 mV/s; 95% confidence interval [CI] 6.94 to 8.66 versus 9.4 mV/s [95% CI, 8.5 to 10.3] at baseline; P=0.033) in group 1. The reduction was most apparent at 8 am, along with a significantly reduced heart rate (P=0.008). Left-sided low-level vagus nerve stimulation did not change vagal nerve activity. The density of tyrosine hydroxylase-positive nerves in the left stellate ganglion 1 week after cessation of LL-VNS were 99 684 μm(2)/mm(2) (95% CI, 28 850 to 170 517) in LL-VNS dogs and 186 561 μm(2)/mm(2) (95% CI, 154 956 to 218 166; P=0.008) in normal dogs. In group 2, the frequencies of paroxysmal atrial fibrillation and tachycardia during active LL-VNS were 1.4/d (95% CI, 0.5 to 5.1) and 8.0/d (95% CI, 5.3 to 12.0), respectively, significantly lower than during sham stimulation (9.2/d [95% CI, 5.3 to 13.1]; P=0.001 and 22.0/d [95% CI, 19.1 to 25.5], P<0.001, respectively). CONCLUSIONS Left-sided low-level vagus nerve stimulation suppresses stellate ganglion nerve activities and reduces the incidences of paroxysmal atrial tachyarrhythmias in ambulatory dogs. Significant neural remodeling of the left stellate ganglion is evident 1 week after cessation of continuous LL-VNS.
Collapse
Affiliation(s)
- Mark J Shen
- Krannert Institute of Cardiology, Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|