1
|
Wang H, Nie Y, Sun Z, He Y, Yang J. Serum amyloid P component: Structure, biological activity, and application in diagnosis and treatment of immune-associated diseases. Mol Immunol 2024; 172:1-8. [PMID: 38850776 DOI: 10.1016/j.molimm.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Serum amyloid P component (SAP) is a member the innate immune humoral arm and participated in various processes, including the innate immune responses, tissue remodeling, and the pathogenesis of inflammatory diseases. Remarkably, SAP is a highly versatile immunomodulatory factor that can serve as a drug target for treating amyloid diseases and reduce inflammation, fibrosis degree, and respiratory disease. In this review, we focus on the biological activities of SAP and its application in different systemic immune-associated diseases. First, we reviewed the regulatory effects of SAP on innate immune cells and possible mechanisms. Second, we emphasized SAP as a diagnostic marker and therapeutic target for immune-associated diseases, including the neuropsychiatric disorders. Third, we presented several recommendations for regulating SAP in immune cell function and potential areas for future research. Some authorities consider SAP to be a pattern recognition molecule that plays multiple roles in the innate immune system and inflammation. Developing therapeutics that target SAP or its associated signaling pathways may be a promising strategy for treating immune-associated diseases.
Collapse
Affiliation(s)
- Haixia Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yadan Nie
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Li B, Djahanpour N, Zamzam A, Syed MH, Jain S, Arfan S, Abdin R, Qadura M. The prognostic capability of inflammatory proteins in predicting peripheral artery disease related adverse events. Front Cardiovasc Med 2022; 9:1073751. [PMID: 36582735 PMCID: PMC9792492 DOI: 10.3389/fcvm.2022.1073751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background Levels of inflammatory proteins and their prognostic potential have been inadequately studied in patients with peripheral artery disease (PAD). In this study, we quantified and assessed the ability of inflammatory proteins in predicting PAD-related adverse events. Methods In this prospective case-control study, blood samples were collected from patients without PAD (n = 202) and patients with PAD (n = 275). The PAD cohort was stratified by disease severity based on ankle brachial index (ABI): mild (n = 49), moderate (n = 164), and severe (n = 62). Patients were followed for 2 years. Plasma concentrations of 5 inflammatory proteins were measured: Alpha-2-Macroglobulin (A2M), Fetuin A, Alpha-1-Acid Glycoprotein (AGP), Serum Amyloid P component (SAP), and Adipsin. The primary outcome of our study was major adverse limb event (MALE), defined as the need for vascular intervention (open or endovascular revascularization) or major amputation. The secondary outcome was worsening PAD status, defined as a drop in ABI greater than or equal to 0.15 over the study period. Multivariable logistic regression was performed to assess the prognostic value of inflammatory proteins in predicting MALE, adjusting for confounding variables. Results Compared to patients without PAD, three inflammatory proteins were differentially expressed in patients with PAD (AGP, Fetuin A, and SAP). The primary outcome (MALE) and secondary outcome (worsening PAD) status were noted in 69 (25%) and 60 (22%) patients, respectively. PAD-related adverse events occurred more frequently in severe PAD patients. Based on our data, the inflammatory protein AGP was the most reliable predictor of primary and secondary outcomes. On multivariable analysis, there was a significant association between AGP and MALE in all PAD disease states [mild: adjusted HR 1.13 (95% CI 1.05-1.47), moderate: adjusted HR 1.23 (95% CI 1.16-1.73), severe: adjusted HR 1.37 (95% CI 1.25-1.85)]. High levels of AGP were associated with lower 2-year MALE-free survival in all PAD disease states [mild (64% vs. 100%, p = 0.02), moderate (64% vs. 85%, p = 0.02), severe (55% vs. 88%, p = 0.02), all PAD (62% vs. 88%, p = 0.01)]. Conclusion Levels of inflammatory protein AGP may help in risk stratifying PAD patients at high risk of MALE and worsening PAD status and subsequently facilitate further vascular evaluation and initiation of aggressive medical/surgical management.
Collapse
Affiliation(s)
- Ben Li
- Unity Health Toronto, Division of Vascular Surgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Niousha Djahanpour
- Unity Health Toronto, Division of Vascular Surgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Abdelrahman Zamzam
- Unity Health Toronto, Division of Vascular Surgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Muzammil H. Syed
- Unity Health Toronto, Division of Vascular Surgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Shubha Jain
- Unity Health Toronto, Division of Vascular Surgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Sara Arfan
- Unity Health Toronto, Division of Vascular Surgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mohammad Qadura
- Unity Health Toronto, Division of Vascular Surgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada,Department of Surgery, University of Toronto, Toronto, ON, Canada,Unity Health Toronto, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada,*Correspondence: Mohammad Qadura,
| |
Collapse
|
3
|
Meijers WC, Bayes-Genis A, Mebazaa A, Bauersachs J, Cleland JGF, Coats AJS, Januzzi JL, Maisel AS, McDonald K, Mueller T, Richards AM, Seferovic P, Mueller C, de Boer RA. Circulating heart failure biomarkers beyond natriuretic peptides: review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur J Heart Fail 2021; 23:1610-1632. [PMID: 34498368 PMCID: PMC9292239 DOI: 10.1002/ejhf.2346] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
New biomarkers are being evaluated for their ability to advance the management of patients with heart failure. Despite a large pool of interesting candidate biomarkers, besides natriuretic peptides virtually none have succeeded in being applied into the clinical setting. In this review, we examine the most promising emerging candidates for clinical assessment and management of patients with heart failure. We discuss high-sensitivity cardiac troponins (Tn), procalcitonin, novel kidney markers, soluble suppression of tumorigenicity 2 (sST2), galectin-3, growth differentiation factor-15 (GDF-15), cluster of differentiation 146 (CD146), neprilysin, adrenomedullin (ADM), and also discuss proteomics and genetic-based risk scores. We focused on guidance and assistance with daily clinical care decision-making. For each biomarker, analytical considerations are discussed, as well as performance regarding diagnosis and prognosis. Furthermore, we discuss potential implementation in clinical algorithms and in ongoing clinical trials.
Collapse
Affiliation(s)
- Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Alexandre Mebazaa
- Inserm U942-MASCOT; Université de Paris; Department of Anesthesia and Critical Care, Hôpitaux Saint Louis & Lariboisière; FHU PROMICE, Paris, France.,Université de Paris, Paris, France.,Department of Anesthesia and Critical Care, Hôpitaux Saint Louis & Lariboisière, Paris, France.,FHU PROMICE, Paris, France
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - John G F Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow; National Heart & Lung Institute, Imperial College London, London, UK
| | - Andrew J S Coats
- Monash University, Melbourne, Australia.,University of Warwick, Coventry, UK
| | | | | | | | - Thomas Mueller
- Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy
| | - A Mark Richards
- Christchurch Heart Institute, Christchurch, New Zealand.,Cardiovascular Research Institute, National University of Singapore, Singapore
| | - Petar Seferovic
- Faculty of Medicine, Belgrade University, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgarde, Serbia
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Temelli B, Yetkin Ay Z, Savaş HB, Aksoy F, Kumbul Doğuç D, Uskun E, Varol E. Circulation levels of acute phase proteins pentraxin 3 and serum amyloid A in atherosclerosis have correlations with periodontal inflamed surface area. J Appl Oral Sci 2018; 26:e20170322. [PMID: 29742255 PMCID: PMC5933826 DOI: 10.1590/1678-7757-2017-0322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022] Open
Abstract
Objectives One of the plausible mechanisms in the relationship between periodontitis and coronary artery disease (CAD) is the systemic inflammatory burden comprised of circulating cytokines/mediators related to periodontitis. This study aims to test the hypothesis that periodontal inflamed surface area (PISA) is correlated with higher circulating levels of acute phase reactants (APR) and pro-inflammatory cytokines/mediators and lower anti-inflammatory cytokines/mediators in CAD patients. Material and Methods Patients aged from 30 to 75 years who underwent coronary angiography with CAD suspicion were included. Clinical periodontal parameters (probing depth - PD, clinical attachment loss, and bleeding on probing - BOP) were previously recorded and participants were divided into four groups after coronary angiography: Group 1: CAD (+) with periodontitis (n=20); Group 2: CAD (+) without periodontitis (n=20); Group 3: CAD (-) with periodontitis (n=21); Group 4: CAD (-) without periodontitis (n = 16). Serum interleukin (IL) -1, -6, -10, tumor necrosis factor (TNF)-α, serum amyloid A (SAA), pentraxin (PTX) 3, and high-sensitivity C-reactive protein (hs-CRP) levels were measured with ELISA. Results Groups 1 and 3 showed periodontal parameter values higher than Groups 2 and 4 (p<0.0125). None of the investigated serum parameters were statistically significantly different between the study groups (p>0.0125). In CAD (-) groups (Groups 3 and 4), PISA has shown positive correlations with PTX3 and SAA (p<0.05). Age was found to predict CAD significantly according to the results of the multivariate regression analysis (Odds Ratio: 1.17; 95% Confidence Interval: 1.08-1.27; p<0.001). Conclusions Although age was found to predict CAD significantly, the positive correlations between PISA and APR in CAD (-) groups deserve further attention, which might depend on the higher PISA values of periodontitis patients. In further studies conducted in a larger population, the stratification of age groups would provide us more accurate results.
Collapse
Affiliation(s)
- Başak Temelli
- Süleyman Demirel University, Faculty of Dentistry, Department of Periodontology, Isparta, Turkey
| | - Zuhal Yetkin Ay
- Süleyman Demirel University, Faculty of Dentistry, Department of Periodontology, Isparta, Turkey
| | - Hasan Basri Savaş
- Süleyman Demirel University, Faculty of Medicine, Department of Biochemistry, Isparta, Turkey
- Alanya Alaaddin Keykubat University, Faculty of Medicine, Department of Medical Biochemistry, Alanya, Antalya, Turkey
| | - Fatih Aksoy
- Süleyman Demirel University, Faculty of Medicine, Department of Cardiology, Isparta, Turkey
| | - Duygu Kumbul Doğuç
- Süleyman Demirel University, Faculty of Medicine, Department of Biochemistry, Isparta, Turkey
| | - Ersin Uskun
- Süleyman Demirel University, Faculty of Medicine, Department of Public Health, Isparta, Turkey
| | - Ercan Varol
- Süleyman Demirel University, Faculty of Medicine, Department of Cardiology, Isparta, Turkey
| |
Collapse
|
5
|
|
6
|
Kowalczuk L, Matet A, Dor M, Bararpour N, Daruich A, Dirani A, Behar-Cohen F, Thomas A, Turck N. Proteome and Metabolome of Subretinal Fluid in Central Serous Chorioretinopathy and Rhegmatogenous Retinal Detachment: A Pilot Case Study. Transl Vis Sci Technol 2018; 7:3. [PMID: 29359109 PMCID: PMC5772832 DOI: 10.1167/tvst.7.1.3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To investigate the molecular composition of subretinal fluid (SRF) in central serous chorioretinopathy (CSCR) and rhegmatogenous retinal detachment (RRD) using proteomics and metabolomics. METHODS SRF was obtained from one patient with severe nonresolving bullous CSCR requiring surgical subretinal fibrin removal, and two patients with long-standing RRD. Proteins were trypsin-digested, labeled with Tandem-Mass-Tag and fractionated according to their isoelectric point for identification and quantification by tandem mass spectrometry. Independently, metabolites were extracted on cold methanol/ethanol, and identified by untargeted ultra-high performance liquid chromatography and high-resolution mass spectrometry. Bioinformatics analyses were conducted. RESULTS In total, 291 proteins and 651 metabolites were identified in SRF samples. Compared with RRD, 128 proteins (77 downregulated; 51 upregulated) and 76 metabolites (43 downregulated; 33 upregulated) differed in the SRF from CSCR. Protein and metabolites notably deregulated in CSCR were related to glycolysis/gluconeogenesis, inflammation (including serum amyloid P component, versican), alternative complement pathway (complement factor H and complement factor H-related protein), cellular adhesion, biliary acid metabolism (farnesoid X receptor/retinoid X receptor), and gluco- and mineralocorticoid systems (aldosterone, angiotensin, and corticosteroid-binding globulin). CONCLUSIONS Proteomics and metabolomics can be performed on SRF. A unique SRF sample from CSCR exhibited a distinct molecular profile compared with RRD. TRANSLATIONAL RELEVANCE This first comparative multiomics analysis of SRF improved the understanding of CSCR and RRD pathophysiology. It identified pathways potentially involved in the better photoreceptor preservation in CSCR, suggesting neuroprotective targets that will require additional confirmation.
Collapse
Affiliation(s)
- Laura Kowalczuk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexandre Matet
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Marianne Dor
- OPTICS Laboratory, Department of Human Protein Science, University of Geneva, Geneva, Switzerland
| | | | - Alejandra Daruich
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Ali Dirani
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Inserm, U1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Paris Descartes Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Aurélien Thomas
- Unit of Toxicology, CURML, Lausanne-Geneva, Switzerland
- Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Natacha Turck
- OPTICS Laboratory, Department of Human Protein Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|